Please use this identifier to cite or link to this item:
Title: Modified spatio-temporal interpolation algorithm using a combination of Kriging method and Kalman filter
Other Titles: ขั้นตอนวิธีการประมาณค่าในช่วงเชิงพื้นที่และเวลาแบบดัดแปรโดยใช้วิธีคริกกิงร่วมกับตัวกรองคาลแมน
Authors: Chalida Kongsanun
Authors: Sompop Moonchai
Thaned Rojsiraphisal
Thanasak Mouktonglang
Chalida Kongsanun
Issue Date: Mar-2024
Publisher: Chiang Mai : Graduate School, Chiang Mai University
Abstract: Spatio-temporal geostatistical modeling constitutes a challenge within diverse scientific and engineering disciplines. This dissertation proposes a novel modification of spatial kriging called spatio-temporal dual kriging (ST-DK), incorporating trend functions into three coefficient types: fixed coefficient, adaptive coefficient, and adaptive coefficient with Kalman filter. The adaptive coefficients are estimated using a Kalman filter, enabling the model to capture complex spatio-temporal dynamics. Furthermore, in order to illustrate the efficacy of the proposed technique, ST-DK is compared with the classical spatio-temporal regression kriging (ST-RK) method for temperature and air pressure data estimation across Thailand in year 2017. The results reveal that both ST-DK and ST-RK employed adaptive coefficient and adaptive coefficient with Kalman filter outperform these two methods using fixed coefficient counterparts for air pressure data. Additionally, the ST-DK model consistently exhibits superior performance comparing to the ST-RK model in air pressure estimation.
Appears in Collections:SCIENCE: Theses

Files in This Item:
File Description SizeFormat 
610551012-CHALIDA KONGSANUN.pdf12.88 MBAdobe PDFView/Open    Request a copy

Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.