Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/76809
Title: | Symbol-pair distances of repeated-root negacyclic codes of length 2<sup>s</sup>over Galois rings |
Authors: | Hai Q. Dinh Hualu Liu Roengchai Tansuchat Thang M. Vo |
Authors: | Hai Q. Dinh Hualu Liu Roengchai Tansuchat Thang M. Vo |
Keywords: | Mathematics |
Issue Date: | 1-Dec-2021 |
Abstract: | Negacyclic codes of length 2s over the Galois ring GR(2a, m) are linearly ordered under set-theoretic inclusion, i.e., they are the ideals <(x+1)i>, 0≤ i≤ 2sa, of the chain ring GR(2aaa, m) [x ]/< x2s +1>. This structure is used to obtain the symbol-pair distances of all such negacyclic codes. Among others, for the special case when the alphabet is the finite field F2m (i.e., a=1), the symbol-pair distance distribution of constacyclic codes over F2m verifies the Singleton bound for such symbol-pair codes, and provides all maximum distance separable symbol-pair constacyclic codes of length 2s over F2m. |
URI: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85119013408&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/76809 |
ISSN: | 10053867 |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.