Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/76809
Title: Symbol-pair distances of repeated-root negacyclic codes of length 2<sup>s</sup>over Galois rings
Authors: Hai Q. Dinh
Hualu Liu
Roengchai Tansuchat
Thang M. Vo
Authors: Hai Q. Dinh
Hualu Liu
Roengchai Tansuchat
Thang M. Vo
Keywords: Mathematics
Issue Date: 1-Dec-2021
Abstract: Negacyclic codes of length 2s over the Galois ring GR(2a, m) are linearly ordered under set-theoretic inclusion, i.e., they are the ideals <(x+1)i>, 0≤ i≤ 2sa, of the chain ring GR(2aaa, m) [x ]/< x2s +1>. This structure is used to obtain the symbol-pair distances of all such negacyclic codes. Among others, for the special case when the alphabet is the finite field F2m (i.e., a=1), the symbol-pair distance distribution of constacyclic codes over F2m verifies the Singleton bound for such symbol-pair codes, and provides all maximum distance separable symbol-pair constacyclic codes of length 2s over F2m.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85119013408&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/76809
ISSN: 10053867
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.