Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKobkoon Janngamen_US
dc.contributor.authorRattanakorn Wattanataweekulen_US
dc.description.abstractMany authors have proposed fixed-point algorithms for obtaining a fixed point of G-nonexpansive mappings without using inertial techniques. To improve convergence behavior, some accelerated fixed-point methods have been introduced. The main aim of this paper is to use a coordinate affine structure to create an accelerated fixed-point algorithm with an inertial technique for a countable family of G-nonexpansive mappings in a Hilbert space with a symmetric directed graph G and prove the weak convergence theorem of the proposed algorithm. As an application, we apply our proposed algorithm to solve image restoration and convex minimization problems. The numerical experiments show that our algorithm is more efficient than FBA, FISTA, Ishikawa iteration, S-iteration, Noor iteration and SP-iteration.en_US
dc.subjectComputer Scienceen_US
dc.subjectPhysics and Astronomyen_US
dc.titleAn Accelerated Fixed-Point Algorithm with an Inertial Technique for a Countable Family of G-Nonexpansive Mappings Applied to Image Recoveryen_US
article.volume14en_US Ratchathani Universityen_US Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.

Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.