Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/71492
Title: Linearizing control of a distributed actuation magnetic bearing for thin-walled rotor systems
Authors: Chakkapong Chamroon
Matthew O.T. Cole
Wichaphon Fakkaew
Authors: Chakkapong Chamroon
Matthew O.T. Cole
Wichaphon Fakkaew
Keywords: Engineering;Mathematics
Issue Date: 1-Dec-2020
Abstract: © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This paper describes an exact linearizing control approach for a distributed actuation magnetic bearing (DAMB) supporting a thin-walled rotor. The radial DAMB design incorporates a circular array of compact electromagnetic actuators with multi-coil winding scheme optimized for supporting thin-walled rotors. A distinguishing feature is that both the x and y components of the radial bearing force are coupled with all four of the supplied coil currents and so a closed form solution for the linearizing equations cannot be obtained. To overcome this issue, a gradient-based root-finding algorithm is proposed to solve the linearizing equations numerically in real-time. The proposed method can be applied with any chosen constraints on current values to achieve low RMS values while avoiding zero-current operating points. The approach is implemented and tested experimentally on a rotor system comprising two radial DAMBs and a uniform cylindrical shell rotor. The results show that the method achieves more accurate reproduction of demanded bearing forces, thereby simplifying the rotor suspension control design and providing improved stability and vibration control performance compared with implementations based on operating point linearization.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85095602935&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/71492
ISSN: 20760825
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.