Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/58764
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKrisana Lasudeeen_US
dc.contributor.authorShinji Tokuyamaen_US
dc.contributor.authorSaisamorn Lumyongen_US
dc.contributor.authorWasu Pathom-Areeen_US
dc.date.accessioned2018-09-05T04:30:25Z-
dc.date.available2018-09-05T04:30:25Z-
dc.date.issued2018-06-11en_US
dc.identifier.issn1664302Xen_US
dc.identifier.other2-s2.0-85048345814en_US
dc.identifier.other10.3389/fmicb.2018.01247en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85048345814&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/58764-
dc.description.abstract© 2018 Lasudee, Tokuyama, Lumyong and Pathom-aree. In this study, we report on the isolation of actinobacteria obtained from spores of Funneliformis mosseae and provide evidence for their potential in agricultural uses as plant growth promoters in vitro and in vivo. Actinobacteria were isolated from spores of F. mosseae using the dilution plate technique and media designed for the selective isolation of members of specific actinobacterial taxa. Six strains namely 48, S1, S3, S4, S4-1 and SP, were isolated and identified based on16S rRNA gene sequences. Phylogenetic analysis showed that isolate SP belonged to the genus Pseudonocardia with P. nantongensis KLBMP 1282Tas its closest neighbor. The remaining isolates belonged to the genus Streptomyces. Two isolates, 48 and S3 were most closely related to S. thermocarboxydus DSM 44293T. Isolates S4 and S4-1 shared the highest 16S RNA gene similarity with S. pilosus NBRC 127772T. Isolate S1 showed its closest relationship with the type strain of S. spinoverrucosus NBRC14228T. The ability of these isolates to produce indole-3-acetic acid (IAA), siderophores and the ability to solubilize phosphate in vitro were examined. All isolates produced siderophores, four isolates produced IAA and two isolates solubilized inorganic phosphate at varying levels. S. thermocarboxydus isolate S3 showed the highest IAA production with high activities of phosphate solubilization and siderophore production. The inoculation of mung beans (Vigna radiata) with this strain resulted in a significant increase in fresh weight, root length and total length as an effect of IAA production. In an experiment with rice (Oryza sativa), S. thermocarboxydus isolate S3 promoted the growth of rice plants grown in low nutritional soil under induced drought stress. This report supports the view that the inoculation of rice with plant growth promoting actinobacteria mitigates some adverse effects of low nutrient and drought stress on rice.en_US
dc.subjectImmunology and Microbiologyen_US
dc.subjectMedicineen_US
dc.titleActinobacteria Associated with arbuscular mycorrhizal funneliformis mosseae spores, taxonomic characterization and their beneficial traits to plants: Evidence obtained from mung bean (Vigna radiata) and Thai Jasmine Rice (Oryza sativa)en_US
dc.typeJournalen_US
article.title.sourcetitleFrontiers in Microbiologyen_US
article.volume9en_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsNational University Corporation Shizuoka Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.