Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/58410
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAttakorn Asanakhamen_US
dc.contributor.authorTanongkiat Kiatsiriroaten_US
dc.date.accessioned2018-09-05T04:23:44Z-
dc.date.available2018-09-05T04:23:44Z-
dc.date.issued2018-01-02en_US
dc.identifier.issn15480046en_US
dc.identifier.issn02726351en_US
dc.identifier.other2-s2.0-84990874687en_US
dc.identifier.other10.1080/02726351.2016.1227408en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84990874687&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/58410-
dc.description.abstract© 2016, © Taylor & Francis. A bluff body was installed to generate a vortex shedding in gas flow under nonthermal plasma field. Various shapes of bluff body were analyzed using computational fluid dynamics for their ability to enhance submicron particle agglomeration. The cylindrical bluff body produced the lowest pressure drop and the plate bluff body showed the widest amplitude of vortex shedding. In the experiment, exhaust gas with a velocity of 1–3 m/s were fed into the test section. The electrical pulse peak voltage was 35 kV, 10 kHz. The bluff body improved the reduction efficiency by 27% and 17% for flat plate and cylindrical bluff bodies, respectively, relative to no-bluff body.en_US
dc.subjectChemical Engineeringen_US
dc.titleUse of bluff body for enhancing submicron particle agglomeration in plasma fielden_US
dc.typeJournalen_US
article.title.sourcetitleParticulate Science and Technologyen_US
article.volume36en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.