Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/55076
Title: An exact displacement based finite element model for axially loaded pile in elasto-plastic soil
Authors: C. Buachart
C. Hansapinyo
W. Sommanawat
Authors: C. Buachart
C. Hansapinyo
W. Sommanawat
Keywords: Agricultural and Biological Sciences;Earth and Planetary Sciences;Engineering;Environmental Science
Issue Date: 1-Jan-2016
Abstract: © 2016, Int. J. of GEOMATE. A displacement based finite element method for analyzing axially loaded pile embedded in finite depth of elasto-plastic soil is presented. The investigation herein is conducted on the condition of shape function by which exact value may be reproduced at the nodal point regarding to a few number of element. The examined shape functions which satisfy the homogeneous governing equations in elastic and plastic soil are introduced to obtain the so-celled exact element stiffness matrix via total potential energy principle. Numerical examples of elasto-static pile, embedded in elasto-plastic Winkler foundation illustrates the accuracy of proposed element compare with conventional finite element shape functions. Axial force and displacement solutions show very good agreement with data from the available literature. Then the proposed shape functions are also used to conduct free vibration analysis of axially loaded pile embedded in elastic soil. The results from finite element modal analysis show fairly accurate compare with analytical solutions.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84958225764&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/55076
ISSN: 21862982
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.