Please use this identifier to cite or link to this item:
Title: The artificial neural network modeling of dynamic hysteresis phase-diagram: Application on mean-field ising hysteresis
Authors: Wimalin Laosiritaworn
Kanokwan Kanchiang
Yongyut Laosiritaworn
Keywords: Engineering
Issue Date: 6-Nov-2013
Abstract: This work used Artificial Neural Network (ANN) to investigate the hysteresis behavior of the Ising spins in structures ranging from one- to two- and three-dimensions. The equation of magnetization motion under the mean-field picture was solved using the Runge-Kutta method to extract the Ising hysteresis loops with varying the temperature, the external magnetic field parameters and the system structure (via the variation of number of nearest neighboring spins). The ANN was then used to establish relationship among parameters via Back Propagation technique in ANN training. With the trained networks, the ANN was used to predict hysteresis data, with an emphasis on the dynamic critical point, and compared with the actual target data. The predicted and the target data were found to agree well which indicates that the ANN functions well in modeling hysteresis behavior and its critical phase-diagram across systems with different structures. © (2013) Trans Tech Publications, Switzerland.
ISSN: 10226680
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.

Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.