Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/51755
Title: In situ electrochemical-transmission surface plasmon resonance spectroscopy for poly(pyrrole-3-carboxylic acid) thin-film-based biosensor applications
Authors: Rapiphun Janmanee
Akira Baba
Sukon Phanichphant
Saengrawee Sriwichai
Kazunari Shinbo
Keizo Kato
Futao Kaneko
Authors: Rapiphun Janmanee
Akira Baba
Sukon Phanichphant
Saengrawee Sriwichai
Kazunari Shinbo
Keizo Kato
Futao Kaneko
Keywords: Materials Science
Issue Date: 22-Aug-2012
Abstract: In this study, we describe the combination of transmission surface plasmon resonance (TSPR) and electrochemical techniques for the application to biosensors with conducting polymers. Electropolymerization was employed to construct poly(pyrrole-3-carboxylic acid) (PP3C) film on a gold-coated grating substrate using pyrrole-3-carboxylic acid (P3C) monomer solution in 0.5 M H2SO4. In situ electrochemical-transmission surface plasmon resonance (EC-TSPR) measurements were carried out to study the kinetic and electroactivity properties of PP3C film. Immobilization of antihuman IgG on the activated surface and the binding process of human IgG and antihuman IgG in neutral solution could be detected in situ by EC-TSPR measurement. The surface modification steps on the PP3C layer led to an increase in intensity of the transmission peak. The performance, sensitivity, and utility of EC-TSPR spectroscopy showed obvious advantages for the detection of binding process with the simple experimental setup, and could be applied to the study of biomolecular interactions in various systems. © 2012 American Chemical Society.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84865236109&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/51755
ISSN: 19448252
19448244
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.