Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaterina E. Aifantisen_US
dc.contributor.authorTao Huangen_US
dc.contributor.authorStephen A. Hackneyen_US
dc.contributor.authorThapanee Sarakonsrien_US
dc.contributor.authorAishui Yuen_US
dc.description.abstractSn based anodes allow for high initial capacities, which however cannot be retained due to the severe mechanical damage that occurs during Li-insertion and de-insertion. To better understand the fracture process during electrochemical cycling three different nanopowders comprised of Sn particles attached on artificial graphite, natural graphite or micro-carbon microbeads were examined. Although an initial capacity of 700 mAh g-1was obtained for all Sn-C nanopowders, a significant capacity fade took place with continuous electrochemical cycling. The microstructural changes in the electrodes corresponding to the changes in electrochemical behavior were studied by transmission and scanning electron microscopy. The fragmentation of Sn observed by microscopy correlates with the capacity fade, but this fragmentation and capacity fade can be controlled by controlling the initial microstructure. It was found that there is a dependence of the capacity fade on the Sn particle volume and surface area fraction of Sn on carbon. © 2011 Elsevier B.V. All rights reserved.en_US
dc.titleCapacity fade in Sn-C nanopowder anodes due to fractureen_US
article.title.sourcetitleJournal of Power Sourcesen_US
article.volume197en_US University of Thessalonikien_US Technological Universityen_US Universityen_US Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.

Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.