Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/50183
Title: Modeling the measurements of cochlear microcirculation and hearing function after loud noise
Authors: Warangkana Arpornchayanon
Martin Canis
Markus Suckfuell
Fritz Ihler
Bernhard Olzowy
Sebastian Strieth
Authors: Warangkana Arpornchayanon
Martin Canis
Markus Suckfuell
Fritz Ihler
Bernhard Olzowy
Sebastian Strieth
Keywords: Medicine
Issue Date: 1-Sep-2011
Abstract: Objective. Recent findings support the crucial role of microcirculatory disturbance and ischemia for hearing impairment especially after noise-induced hearing loss (NIHL). The aim of this study was to establish an animal model for in vivo analysis of cochlear microcirculation and hearing function after a loud noise to allow precise measurements of both parameters in vivo. Study Design. Randomized controlled trial. Setting. Animal study. Subjects and Methods. After assessment of normacusis (0 minutes) using evoked auditory brainstem responses (ABRs), noise (106-dB sound pressure level [SPL]) was applied to both ears in 6 guinea pigs for 30 minutes while unexposed animals served as controls. In vivo fluorescence microscopy of the stria vascularis capillaries was performed after surgical exposure of 1 cochlea. ABR measurements were derived from the contralateral ear. Results. After noise exposure, red blood cell velocity was reduced significantly by 24.3% (120 minutes) and further decreased to 44.5% at the end of the observation (210 minutes) in contrast to stable control measurements. Vessel diameters were not affected in both groups. A gradual decrease of segmental blood flow became significant (38.1%) after 150 minutes compared with controls. Hearing thresholds shifted significantly from 20.0 ± 5.5 dB SPL (0 minutes) to 32.5 ± 4.2 dB SPL (60 minutes) only in animals exposed to loud noise. Conclusion. With regard to novel treatments targeting the stria vascularis in NIHL, this standardized model allows us to analyze in detail cochlear microcirculation and hearing function in vivo. © American Academy of Otolaryngology - Head and Neck Surgery Foundation 2011.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80055083903&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/50183
ISSN: 10976817
01945998
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.