## Table of Contents

|                                    | Page |
|------------------------------------|------|
| 5000                               | Ū    |
| Acknowledgement                    | iii  |
| Thai abstract                      | iv   |
| English abstract                   | vi   |
| Table of Contents                  | viii |
| List of Tables                     | xv   |
| List of Figures                    | xix  |
| Abbreviation and symbols           | xxiv |
| Chapter 1 Introduction             | 1    |
| Chapter 2 Literature review        | 4    |
| 1. Probiotics                      | . 4  |
| 2. Prebiotics                      | 6    |
| 3. Synbiotics                      | 7    |
| 4. Lactobacillus acidophilus       | 7    |
| Copyright by Chiang Mai University | 13   |
| 5.1 Rice varieties and cultivars   | 15 ( |
| 5.2 Rice types                     | 18   |
| 6. Honey                           | 22   |
| 6.1 Honey composition              | 23   |
| 6.2 Honey properties               | 25   |

|              |                                                                 | Page |
|--------------|-----------------------------------------------------------------|------|
|              | . भारा भारत                                                     |      |
| 7.           | Sugar                                                           | 29   |
|              | 7.1 Hydrolysis of sucrose                                       | 30   |
|              | 7.2 Brown sugar                                                 | 31   |
| 8.           | Cell encapsulation                                              | 31   |
|              | 8.1 Microencapsulation of bacterial cells in hydrocolloid beads | 32   |
|              | 8.2 Special treatment                                           | 35   |
|              | 8.3 Advantages and limitations of the extrusion and emulsion    |      |
|              | techniques                                                      | 36   |
| 9.           | Related studies                                                 | 37   |
| Chapter 3 Ma | terials and Methods                                             | 40   |
|              | 3.1 Raw material                                                | 40   |
|              | 3.2 Probiotic microorganism                                     | 40   |
|              | 3.3 Equipment                                                   | 40   |
|              | 3.4 Chemical reagent                                            | 42   |
|              | 3.5 Microbiological media                                       | 43   |
|              | 3.6 Methods                                                     | 43   |
|              | 3.6.1 Preparation of Lactobacillus acidophilus TISTR 450        | 43   |
|              | 3.6.2 Preparation of rice milks                                 | 43   |
|              | 3.6.3 Rice and rice milk composition analysis                   | 44   |

|                                                                 | Page |
|-----------------------------------------------------------------|------|
|                                                                 |      |
| 3.6.4 The effect of types and concentrations of rice milks      |      |
| on the survival of L. acidophilus during storage at             |      |
| chilled temperature                                             | 44   |
| 3.6.5 The effect of initial pH values and initial populations   |      |
| of L. acidophilus on the survival of the probiotic              |      |
| bacterium in rice milks during refrigerated storage             | 47   |
| 3.6.6 The effect of different types and level of carbohydrat    | æ    |
| addition on the survival of L. acidophilus in rice              |      |
| milks during refrigerated storage                               | 48   |
| 3.6.7 The effect of an immobilization technique on the          |      |
| survival of L. acidophilus in rice milks during                 |      |
| refrigerated storage                                            | 48   |
| 3.7 Experimental designs and statistical analysis               | 50   |
|                                                                 |      |
| Chapter 4 Result and Discussion                                 | 51   |
| 4.1 Chemical composition of rice grains and rice milks          | 51   |
| 4.2 The effect of types and concentrations of rice milks on the |      |
| survival of L. acidophilus during storage at 6°C for 15 days    | 53   |
| 4.2.1 Viscosity of different types and concentrations of ric    | e    |
| milks during storage at 6°C for 15 days                         | 53   |
|                                                                 |      |

|                                                                | Page     |
|----------------------------------------------------------------|----------|
|                                                                |          |
| 4.2.2 Color values of different types and concentrations of    |          |
| rice milks during storage at 6°C for 15 days                   | 55       |
| 4.2.3 The viability of L. acidophilus affected by different    |          |
| types and concentrations of rice milks during storage          | <b>;</b> |
| at 6°C for 15 days                                             | 58       |
| 4.2.4 Total titratable acidity of different types and          |          |
| concentrations of rice milks during storage at 6°C             |          |
| for 15 days                                                    | 64       |
| 4.2.5 pH values of different types and concentrations of       |          |
| rice milks during storage at 6°C for 15 days                   | 66       |
| 4.2.6 Total soluble solid of different types and concentration | ns       |
| of rice milks during storage at 6°C for 15 days                | 67       |
| he effect of initial pH values and initial numbers of          |          |
| . acidophilus on the survival of the probiotic bacterium in    |          |
| % (w/v) brown rice milks during storage at 6°C for 15 days     | 70       |
| 4.3.1 Viscosity of 5% (w/v) brown rice milks affected by       |          |
| different initial pH values and initial population of          |          |
| Lacidonhilus during storage at 6°C for 15 days                 | 70       |

|                                                             | Page |
|-------------------------------------------------------------|------|
| 4.3.2 Color of 5% (w/v) brown rice milks affected by        |      |
| different pH values and initial population of               |      |
| L. acidophilus during storage at 6°C for 15 days            | 71   |
| 4.3.3 The viability of $L$ . acidophilus in 5% (w/v) brown  |      |
| rice milks affected by different initial pH values          |      |
| and initial population of the probiotic bacterium           |      |
| during storage at 6°C for 15 days                           | 73   |
| 4.3.4 Total titratable acidity of 5% (w/v) brown rice milks |      |
| affected by different initial pH values and initial         |      |
| population of $L$ . acidophilus during storage at 6°C for   | or   |
| 15 days                                                     | 76   |
| 4.3.5 pH values of 5% (w/v) brown rice milks affected by    |      |
| different initial pH values and initial population of       |      |
| L. acidophilus during storage at 6°C for 15 days            | 79   |
| 4.3.6 Total soluble solid of 5% (w/v) brown rice milks      |      |
| affected by different initial pH values and initial         |      |
| population of $L$ . acidophilus during storage at           |      |
| 6°C for 15 days                                             | 80   |

|                                                                      | Page |
|----------------------------------------------------------------------|------|
| 4.4 The effect of different types and levels of carbohydrate sources | S    |
| on the survival of $L$ . acidophilus in 5% (w/v) brown rice milks    | ı    |
| during storage at 6°C for 15 days                                    | 82   |
| 4.4.1 Viscosity of 5% (w/v) brown rice milks affected by             |      |
| different types and levels of carbohydrate sources                   |      |
| during storage at 6°C for 15 days                                    | 82   |
| 4.4.2 Color of 5% (w/v) brown rice milks affected by                 |      |
| different types and levels of carbohydrate sources                   |      |
| during storage at 6°C for 15 days                                    | 84   |
| 4.4.3 The viability of $L$ . acidophilus in 5% (w/v) brown           |      |
| rice milks affected by different types and levels of                 |      |
| carbohydrate sources during storage at 6°C for                       |      |
| 15 days                                                              | 84   |
| 4.4.4 Total titratable acidity of 5% (w/v) brown rice milks          |      |
| affected by different types and levels of carbohydrate               | sity |
| sources during storage at 6°C for 15 days                            | 91   |
| 4.4.5 pH values of 5% (w/v) brown rice milks affected by             |      |
| different types and levels of carbohydrate sources                   |      |
| during storage at 6°C for 15 days                                    | 93   |

|                                                                  | Page |
|------------------------------------------------------------------|------|
| 4.4.6 Total soluble solid of 5% (w/v) brown rice milks           |      |
| affected by different types and levels of carbohydrate           | €    |
| sources during storage at 5°C for 15 days                        | 95   |
| 4.4.7 Reducing and invert sugars of 5% (w/v) brown rice          |      |
| milks affected by different types and levels of                  |      |
| carbohydrate sources during storage at 6°C for                   |      |
| 15 days                                                          | 97   |
| 4.5 The effect of an immobilization technique on the survival of |      |
| L. acidophilus in 5% (w/v) brown rice milks during storage at    |      |
| 6°C for 15 days                                                  | 100  |
| 4.5.1 Viscosity of 5% (w/v) brown rice milks affected by         |      |
| encapsulated or free cells of L. acidophilus during              |      |
| storage at 6°C for 15 days                                       | 101  |
| 4.5.2 Color values of 5% (w/v) brown rice milks affected         |      |
| by encapsulated or free cells of $L$ . acidophilus during        | git  |
| storage at 6°C for 15 days                                       | 102  |
| 4.5.3 The viability of $L$ . acidophilus in 5% (w/v) brown       |      |
| rice milks affected by an immobilization technique               |      |
| during storage at 6°C for 15 days                                | 103  |

|                                                                                                                                                                                                                                                                       | Page        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 4.5.4 Total titratable acidity of 5% (w/v) brown rice milks affected by encapsulated or free cells of  L. acidophilus during storage at 6°C for 15 days  4.5.5 pH values of 5% (w/v) brown rice milks affected by encapsulated or free cells of L. acidophilus during | 107         |
| storage at 6°C for 15 days  4.5.6 Total soluble solid of 5% (w/v) brown rice milks                                                                                                                                                                                    | 108         |
| affected by encapsulated or free cells of  L. acidophilus during storage at 6°C for 15 days  4.5.7 Reducing and invert sugars of 5% (w/v) brown rice  milks affected by encapsulated or free cells of                                                                 | 109         |
| L. acidophilus during storage at 6°C for 15 days                                                                                                                                                                                                                      | 110         |
| Chapter 5 Conclusion Copyright by Chiang Mai Univer                                                                                                                                                                                                                   | 114<br>Sity |
| References                                                                                                                                                                                                                                                            | 118         |

|                                                           | Page |
|-----------------------------------------------------------|------|
|                                                           |      |
| Appendices                                                | 126  |
| Appendix A Method for chemical and physical analysis      | 127  |
| Appendix B Media and methods for microbiological analysis | 139  |
| Appendix C A physical method for bead measurement         | 144  |
| Appendix D Figures                                        | 147  |
| Appendix E Viable counts of yeasts and molds              | 150  |
| Curriculum Vitae                                          | 155  |
|                                                           |      |
|                                                           |      |
|                                                           |      |
|                                                           |      |
|                                                           |      |

# ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright<sup>©</sup> by Chiang Mai University All rights reserved

## List of Tables

| . พมยนติ                                                                            | Page |
|-------------------------------------------------------------------------------------|------|
| Table 2.1 Microorganisms considered as probiotics                                   | 5    |
| Table 2.2 Nutritional values of brown, white and black glutinous rices              | 19   |
| Table 2.3 Composition of U.S. honey                                                 | 23   |
| Table 2.4 Composition of honey from longan flower                                   | 24   |
| Table 2.5 Nutrients in honey                                                        | 24   |
| Table 2.6 Composition of minerals and vitamins in white and brown sugar in          |      |
| 100 kcal portions                                                                   | 30   |
| Table 2.7 Positive and negative features of extrusion and emulsion techniques       | 36   |
| Table 4.1 The chemical composition of white, brown and black glutinous rices        |      |
| and their milks                                                                     | 52   |
| Table 4.2 Viscosity (cp) of different types and concentrations of rice milks during | 5    |
| storage at 6°C for 15 days                                                          | 54   |
| Table 4.3 Color of rice milks                                                       | 57   |
| Table 4.4 The viability slopes of $L$ . acidophilus in different types and          |      |
| concentrations of rice milks during storage at 6°C for 15 days                      | 60   |
| Table 4.5 Total titratable acidity slope of different types and concentrations      |      |
| of rice milks during storage at 6°C for 15 days                                     | 66   |
| Table 4.6 Total soluble solid of rice milks during storage at 6°C for 15 days       | 69   |

## List of Tables (continued)

Page

| Table 4.7 Viscosity (cp) of 5% (w/v) brown rice milks affected by different initial |    |
|-------------------------------------------------------------------------------------|----|
| pH values and initial population of L. acidophilus during storage at 6°C            |    |
| for 15 days                                                                         | 71 |
| Table 4.8 Color of 5% (w/v)brown rice milks during storage at 6°C for 15 days       | 72 |
| Table 4.9 The viability slopes of L. acidophilus in 5% w/v) brown rice milks        |    |
| affected by different initial pH values and initial population of the               |    |
| probiotic bacterium during storage at 6°C for 15 days                               | 74 |
| Table 4.10 Total titrable acidity slope of 5 % (w/v) brown rice milks affected by   |    |
| different initial pH value and initial population of $L$ . acidophilus              |    |
| during storage at 6°C for 15 days                                                   | 78 |
| Table 4.11 Total soluble solid (°Brix) of 5 % (w/v) brown rice milks affected       |    |
| by different initial pH value and initial population of $L$ . acidophilus           |    |
| during storage at 6°C for 15 days                                                   | 81 |
| Table 4.12 Viscosity (cp) of 5% (w/v) brown rice milks affected by different types  | S  |
| and levels of carbohydrate sources during storage at 6°C for 15 days                | 83 |
| Table 4.13 Color values of 5 % (w/v) brown rice milks affected by different types   | 9  |
| and levels of carbohydrate sources during storage at 6°C for 15 days                | 85 |
|                                                                                     |    |

# List of Tables (continued)

| . พมยนติ                                                                          | Page |
|-----------------------------------------------------------------------------------|------|
| Table 4.14 The viability slope of L. acidophilus in 5% (w/v) brown rice milks     |      |
| affected by different types and levels of carbohydrate sources                    |      |
| during storage at 6°C for 15 days                                                 | 87   |
| Table 4.15 The total titrable acidity slope of 5% (w/v) brown rice milks affected |      |
| by different types and levels of carbohydrate sources during storage              |      |
| at 6°C for 15 days                                                                | 93   |
| Table 4.16 Total soluble solid (°Brix) of 5% (w/v) brown rice milks by different  |      |
| types and levels of carbohydrate sources during storage at 6°C                    |      |
| for 15 days                                                                       | 96   |
| Table 4.17 Viscosity (cp) of 5% (w/v) brown rice milks affected by encapsulated   |      |
| or free cells of L. acidophilus during storage at 6°C for 15 days                 | 101  |
| Table 4.18 Color values of 5% (w/v) brown rice milks affected by encapsulated     |      |
| or free cells of L. acidophilus during storage at 6°C for 15 days                 | 102  |
| Table 4.19 The viability slope of $L$ . acidophilus in 5% (w/v) brown rice milks  |      |
| affected by different treatments of probiotic cells during storage at             |      |
| 6°C for 15 days                                                                   | 104  |

## List of Tables (continued)

| . พมยนต์                                                                        | Page |
|---------------------------------------------------------------------------------|------|
| Table 4.20 The total titratable acidity slope of 5% (w/v) brown rice milks      |      |
| affected by encapsulated or free cell of L. acidophilus during                  |      |
| storage at 6°C for 15 days                                                      | 108  |
| Table 4.21 Total soluble solid (°Brix) of 5% (w/v) brown rice affected          |      |
| by encapsulated or free cell of L. acidophilus during storage at                |      |
| 6°C for 15 days                                                                 | 110  |
| Table E1 The viable count of yeast and mold (log CFU/ml) in different types and | i    |
| concentrations of rice milks during storage at 6°C for 15 days                  | 151  |
| Table E2 The viable count of yeast and mold (log CFU/ml) in 5% (w/v) brown      |      |
| rice milks affected by different initial pH values and initial probiotic        |      |
| bacterium during storage at 6°C for 15 days                                     | 152  |
| Table E3 The viable count of yeast and mold (log CFU/ml) in 5% (w/v) brown      |      |
| rice milks affected by different types and levels of carbohydrate               |      |
| sources during storage at 6°C for 15 days                                       | 153  |
| Table E4 The viable count of yeast and mold (log CFU/ml) in 5% (w/v) brown      |      |
| rice milks affected by encapsulated or free cells of $L$ . acidophilus          |      |
| during storage at 6°C for 15 days                                               | 154  |

## List of Figures

|                                                                                         | Page |
|-----------------------------------------------------------------------------------------|------|
| Figure 2.1 Lactobacillus acidophilus                                                    | 8    |
| Figure 2.2 Homolactic acid fermentation                                                 | 9    |
| Figure 2.3 Heterolactic acid fermentation                                               | 10   |
| Figure 2.4 Commercial products containing L. acidophilus                                | 12   |
| Figure 2.5 Oryza sativa L. structure                                                    | 15   |
| Figure 2.6 Thai rice cultivars                                                          | 16   |
| Figure 2.7 Thai rice forms                                                              | 18   |
| Figure 2.8 Formation of sucrose                                                         | 30   |
| Figure 2.9 Flow diagram of encapsulation of bacteria by the extrusion and               |      |
| emulsion techniques                                                                     | 33   |
| Figure 4.1 The viability of <i>L. acidophilus</i> in different types and concentrations |      |
| of rice milks during storage at 6°C for 15 days                                         | 59   |
| Figure 4.2 Total Plate Count of different types and concentrations of rice milks        |      |
| during storage at 6°C for 15 days                                                       | 62   |
| Figure 4.3 Total titratable acidity (% lactic acid) of different types and              |      |
| concentrations of rice milks during storage at 6°C for 15 days                          | 65   |
| Figure 4.4 pH value of different types and concentrations of rice milks during          |      |
| storage at 6°C for 15 days                                                              | 68   |

# List of Figures (continued)

| . พมยหติ                                                                          | Page |
|-----------------------------------------------------------------------------------|------|
| Figure 4.5 The viability of L. acidophilus in 5% (w/v) brown rice milks affected  |      |
| by different initial pH values and initial population of the                      |      |
| probiotic bacterium during storage at 6°C for 15 days                             | 73   |
| Figure 4.6 Total plate count of 5% (w/v) brown rice milks affected by different   |      |
| initial pH value and initial population of L. acidophilus during                  |      |
| storage at 6°C for 15 days                                                        | 76   |
| Figure 4.7 Total titratable acidity (% lactic acid) of 5% (w/v) brown rice milks  |      |
| affected by different initial pH value and initial population of                  |      |
| L. acidophilus during storage at 6°C for 15 days                                  | 77   |
| Figure 4.8 pH value of 5% (w/v) brown rice milks affected by different initial pH |      |
| value and initial population of L. acidophilus during storage at $6^{\circ}$ C    |      |
| for 15 days                                                                       | 79   |
| Figure 4.9 The viability of L. acidophilus in 5% (w/v) brown rice milks affected  |      |
| by different types and levels of carbohydrate sources during storage              |      |
| at 6°C for 15 days                                                                | 86   |
| Figure 4.10 Total Plate Count of 5% (w/v) brown rice milks affected by            |      |
| different types and levels of carbohydrate sources during storage                 |      |
| at 6°C for 15 days                                                                | 90   |

# List of Figures (continued)

| . พมยนติ                                                                                 | Page |
|------------------------------------------------------------------------------------------|------|
| Figure 4.11 Total titratable acidity of 5% (w/v) brown rice milks affected by            |      |
| different types and levels of carbohydrate sources during storage                        |      |
| at 6°C for 15 days                                                                       | 92   |
| Figure 4.12 pH values of 5% (w/v) brown rice milks affected by different types           |      |
| and levels of carbohydrate sources during storage at 6°C for 15 days                     | 94   |
| Figure 4.13 Reducing sugar of 5% (w/v) brown rice milks affected by different            |      |
| types and levels of carbohydrate sources during storage at 6°C                           |      |
| for 15 days                                                                              | 98   |
| Figure 4.14 Invert sugar of 5% (w/v) brown rice milks affected by different types        |      |
| and levels of carbohydrate sources during storage at 6°C for 15 days                     | 99   |
| Figure 4.15 The viability of <i>L. acidophilus</i> in 5% (w/v) brown rice milks affected |      |
| by different treatments of probiotic cells during storage at 6°C                         |      |
| for 15 days                                                                              | 103  |
| Figure 4.16 Total Plate Count of 5% (w/v) brown rice milks affected by                   |      |
| encapsulated or free cell of L. acidophilus during storage at 6°C                        |      |
| for 15 days                                                                              | 106  |
| Figure 4.17 The total titratable acidity of 5% (w/v) brown rice milks affected           |      |
| by encapsulated or free cell of $L$ . acidophilus during storage at $6^{\circ}$ C        |      |
| for 15 days                                                                              | 107  |

## List of Figures (continued)

|                                                                                  | Page |
|----------------------------------------------------------------------------------|------|
| Figure 4.18 pH values of 5% (w/v) brown rice milks affected by encapsulated or   |      |
| free cell of L. acidophilus during storage at 6°C for 15 days                    | 109  |
| Figure 4.19 Reducing sugar of 5% (w/v) brown rice milks affected by              |      |
| encapsulated or free cell of L. acidophilus during storage at 6°C                |      |
| for 15 days                                                                      | 111  |
| Figure 4.20 Invert of 5% (w/v) brown rice milks affected by encapsulated or free |      |
| cell of L. acidophilus during storage at 6°C for 15 days                         | 112  |
| Figure A1 A standard curve of fructose solution                                  | 135  |
| Figure A2 A standard curve of glucose solution                                   | 137  |
| Figure D1 Rice milks                                                             | 148  |
| Figure D2 Gram staining of Lactobacillus acidophilus TISTR 450                   | 149  |
| Figure D3 Calcium-alginate beads contained Lactobacillus acidophilus             |      |
| TISTR 450 cell with microscope                                                   | 149  |
|                                                                                  |      |
|                                                                                  |      |

### ABBREVIATION AND SYMBOLS

Cm = centimeter

CFU/ml = Colony Forming Unit per milliliter

<sup>o</sup>C = degree centigrade

Cp = centipoise

G = gram

Kcal = kilocalory

Mg = milligram

Ml = milliliter

Mm = millimeter

Mg/g = milligram per gram

MRS = de Man Rogosa Sharpe

 $\mu l$  = microliter

 $\mu m = micrometer$ 

M = molarity

N = normality

Nm = nanometer

pH = power of hydrogen ion

w/v = weight by volume

w/w = weight by weight

% = percentage