ชื่อเรื่องวิทยานิพนธ์

การพัฒนาการเคลือบฟิล์มยาเม็ด โดยใช้ใก โตซาน เป็นสารค่อฟิล์ม

ผู้เขียน

นายจิตรกร บูรณะชนอาภา

ปริญญา

เภสัชสาสตรมหาบัณฑิต (เทคโนโลยีเภสัชกรรม)

กณะกรรมการที่ปรึกษาวิทยานิพนธ์

ผส.คร. ภูริวัฒน์ ลี้สวัสคิ์ ประธานกรรมการ
รศ. พิมพร สีลาพรพิสิฐ กรรมการ
อ.คร. โรเบิร์ต มอลลอย กรรมการ

บทคัดย่อ

การศึกษาครั้งนี้เป็นการใช้ใคโตซานในการเคลือบยาเม็ค โคยมีแอสไพรินเป็นยาตัวอย่าง (เม็ดแกน) เทคนิกการเคลือบยาเม็คใช้หม้อเคลือบแบบมีรูพรุน ออกแบบการทคลองเป็นแบบ 2 ตัว แปร 3 ระดับดังนี้ (1) ความเข้มข้นของไคโตซานในน้ำยาเคลือบ 1% กรคอะซิติก (1%, 1.5% และ 2%w/v) และ (2) อุณหภูมิลมเข้าในหม้อเคลือบ (70, 80 และ 90 °C)

ยาเม็ดแกนมีปริมาณแอสไพริน 90.23 % ยาเม็ดเคลือบฟิล์มทุกตำรับ จากทุกสภาวะมี น้ำ หนัก, ความหนา และเส้นผ่าสูนย์กลาง ใกล้เคียงกัน ยาเม็ดเคลือบฟิล์มใช้เวลาในการแตกตัวนาน กว่ายาเม็ดแกน มีผลทำให้การปลดปล่อยยามีอัตราที่ช้ามาก คังนั้นจึงมีสักยภาพที่จะพัฒนาเป็นยา ออกฤทธิ์นานได้ ลักษณะทางกายภาพยาเม็ดเคลือบฟิล์มดงตัวดีที่อุณหภูมิห้อง แต่ที่อุณหภูมิ 45 °C และ 60 °C ฟิล์มจะมีสีจางลง และเริ่มมีการฉีกขาด การเคลือบฟิล์มโดยใช้ใดโตซานสามารถช่วย ปรับปรุงในด้านความคงตัวทางกายภาพของเม็ดแกน แต่ไม่สามารถช่วยปรับปรุงในด้านความคงตัวทางกายภาพของเม็ดแกน แต่ไม่สามารถช่วยปรับปรุงในด้านความหึ้น และยอมให้ความชื้นซึมผ่านได้ดีจึงไม่สามารถป้องกันการสลายตัวเนื่องจากความชื้น การศึกษาลักษณะพื้นผิวฟิล์มโดยกล้องจุลทรรศน์อิเลคตรอนแบบสแกนนิ่ง พบว่ายาเม็ดเคลือบฟิล์มที่ได้จากการใช้น้ำยาเคลือบเข้มข้น 2%w/v และอุณหภูมิลมเข้า 90 °C จะให้ฟิล์มที่มีพื้นผิวเรียบที่สุด

สรุปได้ว่าไกโตซานสามารถใช้เคลือบเม็ดยาได้ และมีสักยภาพในการพัฒนาเป็นยาออก ฤทธิ์นานได้ เนื่องจากใช้เวลาในการแตกตัวนาน และมีอัตราการละลายช้ามากเมื่อเทียบกับยาเม็ด แกนที่ไม่ได้เคลือบ แต่ไม่สามารถป้องกันการสลายตัวของแอสไพรินจากการถูกไฮโดรไลซ์ได้

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved Thesis Title

Development of Tablet Film Coating Using

Chitosan as a Film Former

Author

Mr. Jittakorn Buranachonapa

Degree

Master of Pharmacy (Pharmaceutical Technology)

Thesis Advisory Committee

Asst.Prof.Dr. Phuriwat

Leesawat

Chairperson

Assoc.Prof. Pimporn

Leelapornpisit

Member

Lect.Dr. Robert

Molloy

Member

ABSTRACT

This study was concerned with the use of chitosan as a tablet film coating. Aspirin was used as the model drug. Tablet coating was carried out in a perforated pan coater. Experiments was designed around 2 processing variables, each at 3 different levels, namely: (1) the concentration of the chitosan coating solution in 1% aqueous acetic acid (1%. 1.5% and 2%w/v) and (2) the inlet air temperature of the coater (70, 80 and 90 °C).

The core tablet contained 90.23% labelled amount of aspirin. All of the coated tablets, from all processing conditions, had similar weights, thicknesses and diameters. The coated tablets exhibited much longer disintegration times than the core tablet, resulting in much slower drug release rates in water. This suggested a potential for development in sustained release applications. The coated tablets appeared to be stable at room temperature but, at the higher temperatures of 45 °C and 60°C, the film coatings began to fade and break. Although the chitosan coating could improve the physical stability of the core tablet, it did not appear to improve the chemical stability against hydrolysis of the aspirin by moisture. This was due to the high affinity of chitosan for moisture combined with its high moisture permeability. Surface topography

studies by scaning electron microscopy (SEM) showed that the 2% w/v coating solution at an inlet air temperature of 90 °C gave a coating with the smoothest surface appearance.

In conclusion, this study has shown that chitosan can be used as a tablet film coating and has potential for development as a means of controlling sustained slow release. It achieves this mainly be increasing the disintegration time and slowing the drug release but is not able to give added protection of the aspirin towards hydrolysis.

