viii

TABLE OF CONTENTS

TABLE OF CONTENTS	
	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT IN THAI	iv
ABSTRACT IN ENGLISH	V1
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
ABBREVIATIONS AND SYMBOLS	xiv
CHAPTER 1 GENERAL INTRODUCTION	
1.1 Overviews and objectives of this thesis	1
1.2 Theoretical backgrounds	3
1.2.2 Internal plasma perameters	5
1.2.2 Internal plasma parameters	4
1.2. Plasma nanotochnology	0
1.5 Flasma nanotechnology	17
1.4 Plasma surface modification process	10
1.4.1 Plasma-enhanced chemical vapor deposition	22
1.4.1.1 Plasma-based functionalization with	25
1.4.2 Physical assisted physical variant deposition on	20
Sputtering deposition system	28
1 4 2 1 Nitro con biomoloculo immobilization	20
1.4.2.1 Nurogen-otomolecule immobilization	29
1.5 Plasma surface modification effects on polymeric	- 30
biomaterials	
1.6 Stem cells in regenerative medicine	35
1.6.1 Cell-biomaterial surface interaction	<i>3</i> 0
1.0.2 Substrate surface properties	51
1./ Post-plasma surface process	40
1.8 The interaction of water and material surface	42

1.9	Review of literatures	

References

CHAPTER 2 IMPROVING THE ATTACHMENT AND PROLIFERATION OF UMBILICAL CORD MESENCHYMAL STEM CELLS ON MODIFIED POLYSTYRENE BY NITROGEN-CONTAINING PLASMA

2.1 Introduction	57
2.2 Experimental setup and methods	58
2.2.1 PS sample preparation	58
2.2.2 Physico-chemical properties study	59
2.3 Results and discussion	64
2.3.1 Surface wettability and aging effect of plasma	64
treated-PS	
2.3.2 Surface characterization	67
2.3.3 Cell behavior	70
2.4 Conclusions	76
References	77

CHAPTER 3 COVALENT GRAFTING NITROGEN-BIOMOLECULES ONTO PLASMA-MODIFIED POLYSTYRENE CULTURE DISH USED FOR SERUM-FREE CONDITION

3.1 Introduction	80
3.2 Experimental setup and methods	81
3.2.1 Physical vapor deposition (PVD)	82
sputtering system	
3.2.2 Plasma-enhanced chemical vapor deposition	82
(PECVD) system	
3.3 Protein biomolecule immobilization onto	84
plasma-modified PS dish	
3.4 Evaluation	85
3.4.1 Physico-chemical properties study	85
3.4.2 The sericin release rate detection using	86
Ultrviolet (UV) absorption	
3.4.3 Cell behavior study	87
3.5 Results and discussion	88
3.5.1 Surface characterization	88

ix

46

43

3.5.2 The release rate detection of sericin molecules	97
into PBS solution	00
3.6 Conclusions	102
	3
References	103
CHAPTER 4 CONCLUSION AND FURTHER STUDY	106
APPENDIX	109
CURRICULUM VITAE	111

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Х

LIST OF TABLES

Table	Pa
1.1 Bond energies and enthalpies of formation of free radicals	6
1.2 Ionization potentials of atoms and molecules	10
1.3 Plasma gases and their applications	20
1.4 Biomedical applications of cold plasmas	32
2.1 N-containing gas plasma conditions	61
2.2 Water contact angle of PS-control and plasma treated PS-membrane	64
2.3 Estimated percentage of carbon functional groups from	70
C1s XPS spectra	
3.1 Sputtering parameters	82
3.2 Deposition parameters	83
3.3 Films thickness and contact angle	89
3.4 XPS surface elements analysis of PS control and PS coated with sericin after washing out	94

LIST OF FIGURES

LIST OF FIGURES	
Figure	Page
1.1 Electron energy distribution according to Druvesteyn and Maxwell.	5
1.2 Schematic diagram of cold plasma reactor	18
1.3 Schematic illustration of the interactions of the plasma phase species with the polymer surface	20
1.4 Polystyrene structure and polystyrene petri dish structure	24
1.5 Interaction between active sites at polymer surface and plasma species	24
1.6 Interaction between nitrogen-containing species to create nitrogen- containing functional groups on PS surface in plasma environment	24
1.7 The contact angle of hydrophobic and hydrophilic surfaces	43
2.1 A 13.56 MHz ICP plasma reactor	60
2.2 Schematic of a 13.56 MHz ICP plasma reactor	60
2.3 Contact angle measurement at PBP laboratory, Physics and Materials Science Department, CMU	61
2.4 Decay of wettability of PS surfaces along 30 days after N ₂ - (a) and NH ₃ -plasma treatment (b)	66
2.5 FTIR spectrum of the plasma treatment amine-containing functional groups with PS-control, N ₂ +He and NH ₃ +He treated PS-membrane	67
2.6 XPS scan spectra of PS-control, N ₂ +He treated-PS and NH ₃ +He treated-PS	68
 2.7 High resolution peaks of C1s for PS control (a), N₂+He treated PS-membrane (b), NH₃+He treated PS-membrane (c) and N1s for N₂+He treated PS-membrane (d) and NH₃+He treated PS-membrane (20x of d) (e) 	69
2.8 Attachment efficiency of BCP-K1 on PS surfaces when cultured for 1 day	72
2.9 Cell proliferation pattern of BCP-K1 on PS surfaces when cultured for 1, 3, 5 and 7 days	73
2.10 Optical micrographs of attachment and proliferation of BCP-K1 when cultured on PS-control, N ₂ +He treated PS-membrane and NH ₃ +He treated PS-membrane for 1, 3, 5 and 7 days	74
 2.11 SEM micrographs of attachment of BCP-K1 when cultured on PS-control, N₂+He treated PS-membrane and NH₃+He treated PS membrane for 24 brs 	75

2.12 FAK-ELISA of BCP-K1 culturing on different PS samples for 1, 3, 5 and 7 days	75
2.13 Immunocytochemical analysis of BCP-K1 for (a) the mesenchymal stem cell markers, CD 105, (b) undifferentiated Wharton's jelly stem cell marker, CD9, and (c) SSEA-4. Negative result (d) for hematopoietic stem cell marker, CD34, showed blue nuclei from DAPI	76
3.1 Concept of biomolecules immobilization onto modified surface	81
3.2 DC magnetron sputtering system (a), a carbon target (b) and PS dishes placed on sample holder (c)	83
3.3 A RF PECVD system (a), plasma discharge (b) and PS dishes placed on bottom electrode (c)	84
3.4 Silk sericin powder (a) and silk sericin solution (b)	86
3.5 PS Petri dishes control, PS+sericin coating and PS-modified+sericin, respectively	86
3.6 Various PS Petri dish with PBS immersed for the release rate detection	87
3.7 PS Petri dish control and PS modified surface	87
3.8 SEM images of a-C surfaces with variable DC power and sputter time	90
3.9 SEM images of different types of a-C surfaces	91
3.10 AFM images of a-C based-films	92
3.11 Infrared spectra of the PS control and modified-PS coated with sericin surfaces	94
3.12 XPS scan spectra of PS control and modified-PS coated with sericin surfaces	95
3.13 High resolution peaks of C1s for PS control and modified-PS coated with sericin surfaces	96
3.14 UV absorption spectrum of the released-sericin solution	98
3.15 Cell proliferation patterns of hBM-MSCs on PS surfaces when cultured in serum condition with 20% FBS and 5% sericin coating at day 1 and day 7	100
3.16 Examples of SEM micrographs of attached hBM-MSCs on silica-based surfaces	100
3.17 Cell proliferation patterns of hBM-MSCs on PS surfaces when cultured in serum-free condition at day 1 and 7	101
3.18 Examples of SEM micrographs of attached hBM-MSCs in serum-free condition	102

	9181918
	ABBREVIATIONS AND SYMBOLS
a-C	= Amorphous carbon
CNFs	= Carbon nanofibers
DC	= Direct current
DLC	= Diamond like carbon
ECM	= Extracellular matrix
eV	= Electron volt
hESCs	= Human embryonic stem cells
MSCs	= Mesenchymal stem cells
MW	= Microwave frequency
PECVD	= Plasma-enhanced chemical vapor deposition
PVD	= Physical vapor deposition
RF	= Radio frequency
UV	= Ultraviolet
VUV	= Vacuum Ultraviolet
λ_D	= Debye length
ω	= The frequency of plasma oscillations
τδυή	= The time between ion/neutral collisions
n _e	= Electron density
ni	= Ion density ang Mal University
n _g	= Gas density
$n_{\rm n}$	= Neutral density

T _e	= The electron temperature
	= The ion temperature
Tg	= The gas temperature
T _{room}	= The room temperature
А, В	= Atoms
М	= Molecule
R	= Radical
R *	= Excited specie
A^+ , M^+ , R^+	= Positive ions
h	= Plank's constant
ν	= radiation frequency
S	= Surface
Р	= Polymer

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved