TABLE OF CONTENTS

xii

ามยนดิ

	- Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	v
ABSTRACT (THAI)	viii
LIST OF TABLES	xix
LIST OF FIGURES	xx
ABBREVATIONS AND SYMBOLS	xxxii
CHAPTER 1 INTRODUCTION	

1.1	Zinc o	xide		1	
1.2	Tungs	ten trioxide		6	
1.3	Flame	spray pyrolysis (FSP)		8	
	1.3.1	FSP reactor characteristic		10	
		1.3.1.1 Nozzle		11	
		1.3.1.2 Syringe pump		-11	
		1.3.1.3 Mass flow controllers		U ₁₁	
		1.3.1.4 Collector		11	
		1.3.1.5 Glass fiber filter		12	

1.4 Ch	Characterization techniques				
		age			
1.4	1 X-ray diffraction method	13			
	1.4.1.1 Identification of phases by XRD	13			
	1.4.1.2 Particle size measurement by XRD	14			
1.4	2 Surface area and porosity determination	15			
	1.4.2.1 Surface area determination	15			
	1.4.2.2 Pore size distribution	18			
1.4	3 Transmission electron microscopy and diffraction	21			
1.4	4 Chemical composition analysis	25			
	1.4.4.1 X-ray spectroscopy in the electron microscope	25			
	1.4.4.2 Selected-area diffraction	27			
	1.4.4.3 Measurements of electron diffraction patterns	29			
1.4	5 Scanning Electron Microscope (SEM)	29			
	1.4.5.1 Instrumentation	30			
	1.4.5.2 Interaction of electron beams with solids	32			
1.4	6 UV-Vis absorption spectroscopy	34			
	7 Photoluminescence (PL)	39			
REFERENCES		43 6 1 5			

2/02/03 **CHAPTER 2 SYNTHESIS AND CHARACTERIZATION**

OF PURE ZnO and WO₃-DOPED ZnO

xiv

Page

	2.1	Litera	Literature review				
		2.1.1	ZnO preparation	49			
		2.1.2	WO ₃ preparation	55			
		2.1.3	Flame spray pyrolysis	59			
		2.1.4	Flame-made ZnO nanoparticles and their composites	63			
	2.2	Exper	imental	65			
		2.2.1	Chemicals and equipment	65			
		2.2.2	Precursor preparation for FSP	66			
		2.2.3	Procedures for synthesizing nanoparticles by FSP	68			
		2.2.4	Particle characterization	72			
	2.3 Results and discussion2.3.1 FSP synthesis						
		2.3.2	Powder appearance	74			
		2.3.3	Characterization of flame-made nanopowders	74			
			2.3.3.1 X-Ray diffraction analysis	74			
			2.3.3.2 BET analysis	75			
			2.3.3.3 Transmission Electron Microscopy (TEM)	77			

2.3.3.4 Scanning Electron Microscopy (SEM)

79

and Energy Dispersive x-ray

Spectroscopy (EDS)

XV

	Page
2.3.3.5 UV-Vis absorption spectroscopy	84
2.3.3.6 Photoluminescence	85
2.4 Conclusions	87
REFERENCES	88

CHAPTER 3 APPLICATION OF PURE ZnO AND WO₃-DOPED

ZnO FOR USE AS PHOTOCATALYSTS

3.1	Introd	uction	93
	3.1.1	Electronic properties of semiconductor	93
	3.1.2	Mechanistic of ZnO Semiconductor Photocatalysis	95
	3.1.3	Photocatalytic oxidation	99
	3.1.4	Photocatalytic reduction	99
	3.1.5	Modified photocatalysts: enhancement of	99
		photocatalytic activity	
		3.1.5.1 Doping with transition metal ions	100
		3.1.5.2 Metal ion deposition	100

xvi

			3.1.5.3 Semiconductor compound deposition	101
		3.1.6	Literature review	102
	3.2	Experi	mental	105
		3.2.1	Apparatus	105
				Page
		3.2.2	Preparation of photocatalyst suspension and operation	106
			3.2.2.1 Calibration curve measurement	107
	3.3	Result	s and discussion	108
		3.3.1	The methanol degradation curve	108
		3.3.2	The glucose degradation curve	109
		3.3.3	The sucrose degradation curve	110
		3.3.4	Photocatalytic activity of pure ZnO and	111
			WO ₃ -doped ZnO with methanol, glucose	
			and sucrose under UV irradiation	
	3.4	Conclu	isions	116
REFE	RENC	ES		117

CHAPTER 4 APPLICATION OF PURE ZnO AND WO₃-DOPED

ZnO FOR USE AS GAS SENSORS 4.1 Introduction 122

	xvii	
	4.1.1 Operation principle of the semiconducting gas sensors	123
	4.1.2 Sensor requirements and characteristics	131
	4.1.2.1 Selectivity	131
	4.1.2.2 Sensitivity	132
	4.1.2.3 Response and recovery time	132
		Page
	4.1.3 Literature review	134
4.2	Experimental	137
	4.2.1 Chemical	137
	4.2.2 Apparatus	137
	4.2.3 Preparation of gas-sensing films	137
	4.2.4 Characterization of gas-sensing films	138
4.3	Results and discussion	139
	4.3.1 X-ray diffraction analysis	139
	4.3.2 SEM cross-section micrograph and	140
	EDS line scan mode	
	4.3.3 Gas sensing characteristic	148
	Conclusions	157
REFERENC	By Chiang Mai Univ	159 En Sitt

xviii

CHAPTER 5 APPLICATION OF PURE ZnO AND WO3-DOPED ZnO

FOR USE AS PHOTOVOLTAIC DEVICES

5.1	Introd	uction	163
	5.1.1	Electrical characteristic parameter of the photovoltaic	166
		5.1.1.1 Short-circuit current	168
		5.1.1.2 Open-circuit voltage	169
			Page
		5.1.1.3 Fill factor	169
		5.1.1.4 Power conversion efficiency	169
	5.1.2	The ZnO nanoparticles as an electron acceptor with	170
		an electron donor conjugated polymers P3HT	
	5.1.3	Literature review	172
5.2	Exper	imental	174
	5.2.1	Chemical	174
	5.2.2	Apparatus	174
	5.2.3	Measurement conditions	175
	5.2.4	Preparation of photovoltaic devices	176
		5.2.4.1 Indium Tin Oxide (ITO) glass cleaning	176
		5.2.4.2 ZnO/P3HT solution preparation	177
		5.2.3.3 Photovoltaic fabrication	177

xix

	5.3	Results and discussion	
		5.3.1 Characterization of hybrid ZnO/P3HT bulk	179
		heterojunction photovoltaic devices	
	5.4	Conclusions	185
	REFERENC	CES	186
CUR	RICULUM V	ITAE	190
		LIST OF TABLES	
Table			Раде
1 1	Dhugiaal maa	entine of unutrite 7mO	
1.1	Physical prop	Serties of wurtzite ZhO	5
1.2	Physical prop	perties of WO ₃	7
2.1	Precursor pre	eparation for FSP	67
3.1	The comparis	son of time for completing the degradation process	112
	of methanol,	glucose and sucrose with different types of photocatalyst	
5.1	Characteristi	c parameters of hybrid WO ₃ -doped ZnO/P3HT	
	photovoltaic	with different amount of WO ₃ concentration	185

Copyright[©] by Chiang Mai University

LIST OF FIGURES

Figure	e ,	Page	
1.1	Stick and ball representation of ZnO crystal structures:	2	
	(a) cubic rocksalt, (b) cubic zinc-blende, and (c) hexagonal wurtzite.		
	The shaded gray and black spheres denote Zn and O atoms, respectively.		
1.2	The wurtzite structure model of ZnO. The tetrahedral	3	
	coordination of Zn–O is shown.		
1.3	Schematic illustration of the arrangement of the octahedra in a slightly	7	
	substoichiometric WO ₃ crystal		
1.4	The basic steps of particle formation and growth by gas-to-particle	9	
	conversion in FSP		

1.5	The schematic of experimental setup of FSP reactor	12	
1.6	Schematic diagram of X-ray line broadening effects	15	
1.7	Typical isotherm for N_2 adsorption-desorption on γ -Al ₂ O ₃	3 16	
1.8	BET plot for surface area (S.A.) determination for γ -Al ₂ O ₃	17	
1.9	BJH analysis of data from Figure 1.8 showing differential and	20	
	cumulative mesopore volume distributions for γ -Al ₂ O ₃		
1.10	(a) Signals generated during electron beam-sample interactions;	24	
	(b) a 'ray diagram' of image formation; and (c) a schematic diagram		
	of the principles of electron microscopy: (A) imaging and (B) diffraction		
Figur	e	Page	
1.11	The process of electron-stimulated X-ray emission in the electron	25	
	microscope		
1.12	(a) Ray diagram showing the formation of the diffraction pattern	28	
	and intermidate image by the objective lens. (b) In a three-lens		
	microscope the intermediate lens (or projector 1) is normally focused		
	on the intermediate image formed by objective lens		
1.13	Schematic diagram of scanning electron microscope with CRT display	32	
1.14	Diffuse reflectance spectrum of the fundamental absorption edge	35	
	of titanium dioxide powder. Absorbance $((F(R_{\infty}))$ vs. wavelength:		
	(i) indirect transition; (ii) direct transition; (iii) direct band gap;		

xxii

	$E_g = hc / \lambda_g$	
1.15	(a) Schematic energy band diagram showing hole-electron pair	38
	formation as a consequence of differing energies of incident radiation;	
	(b) schematic energy band diagram (energy vs. wave vector \tilde{k})	
	illustrating the difference between direct and indirect transitions	
1.16	Typical experimental set-up for photoluminescence measurement	41
1.17	(a-c) Radiative recombination paths: (a) band-toband;	42
	(b) donor to valence band; (c) conduction band to acceptor.	
	(d) Nonradiative recombination via an intermediate stat	
Figur	e	Page
2.1	Schematic overview of the synthesis of ZnO procedure by	50
	acetate-citrate gelation method	

 2.2
 Flow chart for synthesis of ZnO nanopowders by the
 52

 polymerized complex method
 52

53

54

- 2.3 Schematic diagram for precipitation of precursor (zinc oxalate) nanoparticles using Zn-AOT/ethanol/isooctane microemulsion system
- 2.4 Flow chart for synthesis of ZnO nanoparticles by the precipitationtransformation method
- 2.5 Schematic diagram of the apparatus used for the formation of

xxiii

WO₃ nanoparticle

2.6	Schematic of the FSP unit for pure ZnO production.
	The liquid precursor was dispersed by a gas stream and ignited
	by a premixed methane/oxygen flame.
2.7	Schematic of the FSP unit for WO ₃ -doped ZnO production.

Schematic of the FSP unit for WO₃-doped ZnO production. The small WO₃ particles are formed by nucleation, condensation, and deposited on ZnO support at the last step.

Figure

2.8	Spray flame (0.5 M zinc naphthenate and tungsten (VI) ethoxide	73
	in ethanol) of (a) pure ZnO, (b) 0.25 mol% WO ₃ -doped ZnO,	
	(c) 0.50 mol% WO ₃ -doped ZnO, (d) 0.75 mol% WO ₃ -doped ZnO,	
	(e) 1.0 mol% WO ₃ -doped ZnO, (f) 3.0 mol% WO ₃ -doped ZnO and	
	(g) 5.0 mol% WO ₃ -doped ZnO	
2.9	The flame-made (5/5) pure ZnO and 0.25-5 mol% WO ₃ -doped	74
	ZnO nanoparticles ordered from the left to right with	
	increasing WO ₃ concentrations.	

72

Page

xxiv

2.10	XRD patterns of the flame-made $(5/5)$ pure ZnO and WO ₃ -doped	75
	ZnO nanoparticles with different WO ₃ concentrations	
2.11	The specific surface area (SSA_{BET}) and BET-particle diameter (d_{BET})	- 76
	of the flame-made (5/5) pure ZnO and WO ₃ -doped ZnO	
	nanoparticles with different WO ₃ concentrations	
2.12	TEM bright-field images of the flame-made $(5/5)$ (a) pure ZnO,	78
	(b) 0.25 mol% WO ₃ -doped ZnO, (c) 0.50 mol% WO ₃ -doped ZnO,	
	(d) 0.75 mol% WO ₃ -doped ZnO, (e) 1.0 mol% WO ₃ -doped ZnO,	
	(f) 3.0 mol% WO ₃ -doped ZnO and 5.0 mol% WO ₃ -doped ZnO	
	nanoparticles. Insets show the corresponding diffraction patterns	
	of ZnO in each image.	

Figur	e	Page
2.13	SEM image of the flame-made (5/5) pure ZnO nanoparticles.	80
	Inset shows EDS spectrum for the region indicated by the white arrow.	
2.14	SEM image of the flame-made (5/5) 0.25 mol% WO ₃ -doped ZnO	80
	nanoparticles. Inset shows EDS spectrum for the region indicated	
	by the white arrow.	
2.15	SEM image of the flame-made (5/5) 0.50 mol% WO ₃ -doped ZnO	81
	nanoparticles. Inset shows EDS spectrum for the region indicated	

	XXV		
	by the white arrow.		
2.16	SEM image of the flame-made (5/5) 0.75 mol% WO ₃ -doped ZnO	81	
	nanoparticles. Inset shows EDS spectrum for the region indicated		
	by the white arrow.		
2.17	SEM image of the flame-made (5/5) 1.0 mol% WO ₃ -doped ZnO	82	
	nanoparticles. Inset shows EDS spectrum for the region indicated		
	by the white arrow.		
2.18	SEM image of the flame-made (5/5) 3.0 mol% WO ₃ -doped ZnO	82	
	nanoparticles. Inset shows EDS spectrum for the region indicated		
	by the white arrow.		
2.19	SEM image of the flame-made (5/5) 5.0 mol% WO ₃ -doped ZnO	83	
	nanoparticles. Inset shows EDS spectrum for the region indicated		
	by the white arrow.		
Figure	AT INTVER	Page	
2.20	Absorption spectra of the flame-made (5/5) pure ZnO and	84	
	WO ₃ -doped ZnO nanoparticles with different WO ₃ concentrations		
2.21	Photoluminescence spectra of the flame-made (5/5) pure ZnO	86	
	and WO ₃ -doped ZnO nanoparticles with different WO ₃ concentrations		
Convr ^{3.1}	The effect of the increase in the number N of monomeric units	94	
	from unity to cluster of more than 2000 on the electronic		

	xxvi	
	structure of a semiconductor compound	
3.2	Energy structures of various photosemiconductors	95
3.3	Illustrations of electrochemistry of ZnO particles in contact with an	96
	electrolyte and after irradiation. (a) Fermi level near the conduction	
	band in ZnO prior to contact with an electrolyte. (b) Band-bending	
	and the presence of an electric field after contact with electrolyte.	
	(c) Transfer of the photogenerated electrons and holes upon irradiation.	
	E_{VB} : Valence band, E_{CB} : Conduction band	
3.4	The possible pathways of the main charge carriers occurring in a ZnO	97
	particle following photoexcitation.	
3.5	Electron mediation by WO ₃ in contact with ZnO surface	102
3.6	Scheme of spiral photoreactor	106

3.6	Scheme of spiral photoreactor	106
Figur	e	Page
3.7	The percent of degradation of methanol using pure and	109
	WO ₃ -doped ZnO nanoparticles photocatalyst containing 0.25,	
	0.50, 0.75 and 1.0 mol% WO ₃	
3.8	The percent of degradation of glucose using pure and	110
	WO ₃ -doped ZnO nanoparticles photocatalyst containing 0.25,	

xxvii

	0.50, 0.75 and 1.0 mol% WO ₃	
3.9	The percent of degradation of sucrose using pure and	111
	WO ₃ -doped ZnO nanoparticles photocatalyst containing 0.25,	
	0.50, 0.75 and 1.0 mol% WO ₃	
3.10	Photocatalytic degradation rate of methanol, glucose and sucrose	114
	as a function of WO ₃ loading on ZnO photocatalyst	
3.11	Simplified diagram of electronic energy level of conduction (CB)	115
	and valance (VB) band of ZnO, electronic energy level of WO_3	
	clusters ([WO ₃]n), WO ₃ (bulk) and O ₂ adsorbed on ZnO surfaces (O _A)	
4.1	Space-charge modulations by adsorption in a semiconducting <i>n</i> -type	124
	semiconductor oxide sensor	
4.2	Schematic representation of a semiconducting oxide sensor with	126
	bulk (g_B) and surface (g_S) conductivities shown	
4.3	Grains of semiconductor, to show how the inter-grain	128
	contact resistance appears.	
Figure	e	Page
4.4	Influence of particle size and contacts on resistances	129
	and capacitances in thin films are shown schematically	
	for a current flow I from left to right	
4.5	Schematic models for grain-size effects	130

xxviii

4	.6	(a) ZnO thin film on Al ₂ O ₃ substrates with interdigitated Au electrodes	138
		(b) Schematic cross-sectional view of ZnO gas-sensing film	
4	.7	Gas sensor measurement setup	139
4	.8	XRD pattern of gas sensing film based on flame-made	140
		0.75 mol% WO ₃ -doped ZnO nanoparticles after anneal	
		and sensing test at 400 °C. JCPDS file No. 89-0510 and	
		82-1468 refer to ZnO and Al ₂ O ₃ , respectively	
4	.9	Cross-section SEM micrograph of gas sensing film based	141
		on flame-made pure ZnO nanoparticles. Inset shows the	
		higher magnification image.	
4	.10	Cross-section SEM micrograph of gas sensing film based	142
		on flame-made 0.25 mol% WO ₃ -doped ZnO nanoparticles	
4	.11	Cross-section SEM micrograph of gas sensing film based	142
		on flame-made 0.50 mol% WO ₃ -doped ZnO nanoparticles	

Page 143 Figure Cross-section SEM micrograph of gas sensing film based on flame made 0.75 mol% WO₃-doped ZnO nanoparticles. Inset shows the higher magnification image.

xxix

4.13	The EDS line scan mode-SEM analysis of sensor based on	144
	flame-made pure ZnO nanoarticles. The histograms showed	
	the elemental compositions of samples. The lines scans correspond	
	to O, Zn, Al, Au and W elements.	
4.14	The EDS line scan mode-SEM analysis of sensor based on	145
	flame-made 0.25 mol% WO ₃ -doped ZnO nanoarticles. The histograms	
	showed the elemental compositions of samples. The lines scans	
	correspond to O, Zn, Al, Au and W elements.	
4.15	The EDS line scan mode-SEM analysis of sensor based on	146
	flame-made 0.50 mol% WO ₃ -doped ZnO nanoarticles. The histograms	
	showed the elemental compositions of samples. The lines scans	
	correspond to O, Zn, Al, Au and W elements.	
4.16	The EDS line scan mode-SEM analysis of sensor based on	147
	flame-made 0.75 mol% WO ₃ -doped ZnO nanoarticles. The histograms	
	showed the elemental compositions of samples. The lines scans	
	correspond to O, Zn, Al, Au and W elements.	

Figure

4.17 NO₂ response of WO₃-doped ZnO with different WO₃ concentrations vs. time towards 1, 5, 10, 20, 30 and 50 ppm square pulses at 400°C

Page

4.18NO2 sensitivity of WO3-doped ZnO with different WO3 concentrations150vs. operating temperature at 50 ppm concentration

XXX

- 4.19 C₂H₅OH response of WO₃-doped ZnO with different WO₃ concentrations
 151 vs. time towards 100, 200, 300, 500 and 1,000 ppm square pulses at 400°C
- 4.20 C₂H₅OH sensitivity of WO₃-doped ZnO with different WO₃ concentrations 152
 vs. operating temperature at 1,000 ppm concentration
- 4.21 CO response of WO₃-doped ZnO with different WO₃ concentrations

vs. time towards 50, 100, 300, 500 and 1,000 ppm square pulses at 400°C

153

- 4.22 CO sensitivity of WO₃-doped ZnO with different WO₃ concentrations vs. 154 operating temperature at 1,000 ppm concentration
- 4.23 H₂ response of WO₃-doped ZnO with different WO₃ concentrations vs. 155 time towards 500, 1,000, 2,000, 5,000 and 1,000 ppm square pulses at 400°C
- 4.24 H₂ sensitivity of WO₃-doped ZnO with different WO₃ concentrations vs.
 156 operating temperature at 2,000 ppm concentration

Figure

4.25 The comparison of sensitivity of WO₃-doped ZnO with different WO₃ 157 concentrations towards 50 ppm of NO₂, 1,000 ppm of C₂H₅OH, 1,000 ppm of CO and 1,000 ppm of H₂ at 400°C

xxxi

- 5.1 (a) Current (voltage) characteristics of a typical organic diode 167
 (b) Metal-insulator-metal picture of organic diode device function.
 (b-a) Closed circuit condition: under illumination photogenerated charges drift toward the contacts. (b-b) Open circuit condition: the current becomes zero. (b-c) Reversed bias: photogenerated charges drift in strong electric fields, the diode operates as a photodetector. (b-d) Forward bias larger than Voc: the injection increases and the diode open up
 5.2 Chemical structures of (a) P3HT and (b) PEDOT: PSS 171
 5.3 Exciton dissociation of P3HT/ZnO hybrid bulk-heterojunction 171
- 5.4 The AM 1.5 solar spectrum with total irradiation power 100 mW/cm². 176
 Inset shows the solar simulation system
- 5.5 The photovoltaic device structure5.6 The hybrid bulk heterojunction photovoltaic devices before
 - .6 The hybrid bulk heterojunction photovoltaic devices before depositing with LiF and Al back electrode

xxxii

Figure	e l l l l l l l l l l l l l l l l l l l	Page
5.7	The current-voltage (I-V) characteristic of hybrid pure ZnO/P3HT	180
	photovoltaic measured under AM 1.5 illumination	
5.8	The current-voltage (I-V) characteristic of hybrid 0.25 mol% WO ₃ -doped	181
	ZnO/P3HT photovoltaic measured under AM 1.5 illumination	
5.9	The current-voltage (I-V) characteristic of hybrid 0.50 mol% WO ₃ -doped	181
	ZnO/P3HT photovoltaic measured under AM 1.5 illumination	
5.10	The current-voltage (I-V) characteristic of hybrid 0.75 mol% WO ₃ -doped	182
	ZnO/P3HT photovoltaic measured under AM 1.5 illumination	
5.11	The current-voltage (I-V) characteristic of hybrid 1.0 mol% WO ₃ -doped	182
	ZnO/P3HT photovoltaic measured under AM 1.5 illumination	
5.12	The current-voltage (I-V) characteristic of hybrid 3.0 mol% WO ₃ -doped	183
	ZnO/P3HT photovoltaic measured under AM 1.5 illumination	
5.13	The comparison of current-voltage (I-V) characteristic of hybrid	184
	WO ₃ -doped ZnO/P3HT photovoltaic with difference amount	

of WO₃ concentration

ลิ<mark>ปสิทธิมหาวิทยาลัยเชียงไหม</mark> Copyright[©] by Chiang Mai University All rights reserved

xxxiii

ABBREVIATIONS AND SYMBOLS

Å	Angstrom
AM	Air Mass
Au	Gold
$A_{\rm m}$	The cross-sectional area of absorbed gas
Al ₂ O ₃	Alumina
\mathbf{A}^+	Electron acceptor
at.%	atomic %
bfp	Back focal plane
В	The peak width measured at half height measured in
	radius
BET	Brunauer-Emmett-Teller
С	Amount of carbon
С	A constant, related to the free energy of adsorption
С	Speed of light
cm	Centimeter
cm ³ /min	Cubic centimeter per minute
СО	Carbon monoxide
CO ₂	Carbon dioxide
CRT	Cathode-Ray Tube
CVD	Chemical Vapor Deposition
CMU	Chiang Mai University
$C_{\rm A}$	The concentration of element A
$C_{ m B}$	The concentration of element B

C ₂ H ₅ OH	Ethanol
°C	Degrees Celsius
d _{hkl}	Interplanar distance between (hkl) planes
d	the lattice planar spacing or thickness
DTA	Differential Thermal Analysis
СВ	Conduction Band
D	an electron donor
d _{RFT}	BET-particle diameter
e	Electron
e CP	Electron in the conduction band
eV	Electron Volt
E	binding energy
EDS, EDX	Energy Dispersive X-ray Spectroscopy
EM	Electron Microscope
E_0	Energy of ground state
E_1	Energy of first excited state
Ea	Apparent activation energy
E _b	Binding energy
E _F	Fermi level
Eg	Optical band gap of the semiconductor
E _{CB}	Conduction band energy
E _{VB}	Valence band energy
E _k	Kinetic energy
E _{vac}	Energy of vacuum level
FF-h+C hv	Fill factor
FT	Fourier Transform

FT-IR	Fourier transform spectroscopy
FSP	Flame Spray Pyrolysis
G	Conductance
g/l	grams/liter
h	Hour
h	Plank's constant (6.63×10^{-34} Js), hour
НСР	Hexagonal close-packing
НОМО	Highest occupied molecular orbital
hν	Photon energy
H ₂	Hydrogen
\mathbf{h}^+	Hole
$h^+_{ m VB}$	Hole in the valence band
I_0	Intensity of the incident beam
Ι	Intensity of the transmittance
I _A	Background subtracted peak intensities for A
IB	Background subtracted peak intensities for B
I _{SC}	Short circuit current
ΙΤΟ	Indium-tin oxide
IUPAC	International Union of Pure and Applied Chemistry
J	Intensity of the reflected radiation
JCPDS	Joint Committee Powder Diffraction Standards
К	Kelvin
K	Absorption coefficient
k	Conductivity value
keV	Kilo electron volt
kV	Kilo-volt

xxxvi

Ĩ	Wave vector
κ̃' _{cb}	Wave vector of the lowest energy state in the
	conduction band
$\tilde{k}'_{,b}$	Wave vector of the highest energy state in the valence
	band
LUMO	Lowest unoccupied molecular orbital
LPG	Liquid petroleum gas
L/min	Liter per minute
M	Mol per liter
MIM	Metal-Insulator-Metal
mg	Milligram
min	Minute
mL	Milliliter
m ²	Square meter
mS	Millisiemen
n	Order of diffraction
n _b	Electron density in bulk
n _s	Electron density in the space-charge region
nm	Nanometer (10^{-9} m)
NO ₂	Nitrogen dioxide
Na	Avogadro's number (6.02×10^{23})
0 8 1 1 2 0 6	Oxygen
O ₂	Oxygen gas
O ₂ •	Superoxide radical
O _A	O ₂ adsorbed on surfaces
OH•	Hydroxyl radical

xxxvii

p	Pressure at the constant temperature
p_0	Saturation pressure at the measurement temperature
PL	Photoluminescence
R_{lpha}	Absolute remittance
rpm	Revolution per minute
<i>r</i> _k	Kelvin radius
R ₀	Resistance in air
Rg	Resistance when the gas is present
r _p	Actual pore radius
S	Twice the scattering coefficient of sample or gas-
	sensing sensitivity
Sc	Semiconductor
SEM	Scanning Electron Microscopy
SSA	Specific Surface Area
SSA _{BET}	BET specific surface area
Т	Transmittance
T _{rec}	Recovery time
T _{res}	Response time
ТЕМ	Transmission Electron Microscopy
TGA	Thermal Gravimetric Analysis
t	Thickness (t) of adsorbed N ₂ layers
t _{hkl}	Particle size measured from X-rays diffracted from th
	(<i>hkl</i>) planes
UV-Vis	Ultraviolet-Visible

	nreccure
VD	Valence hand
V B	Open eizewit voltage
V OC	The maximum deliverable newer
V _m I _m	
V m	The volume of gas adsorbed at STP per unit mass of
	adsorbent, when the surface is covered by a
	unimolecule layer of adsorbate
V _{mol}	The molar volume of absorbate gas at STP(22.4 mol ⁻¹)
WO ₃	Tungsten trioxide
XPS	X-ray photo-electron spectroscopy
XRD	X-ray diffraction
Ζ	Atomic number
ZnO	Zinc Oxide
λ	Wavelength
μg	Microgram (10 ⁻⁶ g)
μg C	Microgram of carbon
μm	Micron (10 ⁻⁶ meter)
μ _s	Electron mobility at the surface
μS/cm	MicroSiemens /square centimeter
Φ	Work function
3	Absorptivity
E0 03	The permittivity of the vacuum
θΟυΠυ	The Bragg angle for the reflection
ν	Frequency
V _{as}	Frequency asymmetric
ν_{s}	Frequency symmetric

xxxix

 σ_{s}

 $\Delta \phi_s$

ΔR

Surface conductivity The surface potential barrier height Resistance change Power conversion efficiency

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved