บทที่ 4

ผลการทดลอง

การทดลองที่ 1 ตรวจสอบหาสารคลอไพริฟอสตกค้าง และการปนเปื้อนเชื้อ Colletotrichum capsici ในพริกสด

1.1 ตรวจสอบหาสารคลอไพริฟอสตกค้างในพริกสด

จากการสุ่มตรวจพริกสด จากแหล่งต่างๆ ในจังหวัดเชียงใหม่ทั้ง 4 แห่งๆ ละ 1 สัปดาห์ ในช่วง เดือนสิงหาคม พ.ศ. 2552 พบว่า มีสารคลอไพริฟอสตกค้างในพริกขี้หนูสดจากตลาดทั้ง 4 แห่งคือ ตลาดเมืองใหม่ ตลาดต้นพยอม ตลาดรวมโชค และตลาดธานินทร์ ซึ่งมีเปอร์เซ็นต์การตกค้างเท่ากับ 45.16, 100, 38.71 และ 54.21 เปอร์เซ็นต์ ตามลำดับ โดยในตลาดต้นพยอมนั้นพบสารคลอไพริฟอส ตกค้างมากที่สุด (ตาราง 7)

1.2 ตรวจสอบหาการปนเปื้อนของเชื้อ Colletotrichum capsici ในพริกสด

จากการตรวจสอบการปนเปื้อนด้วยวิธี Tissue transplanting technique หลังจากเก็บรักษาไว้ที่ อุณหภูมิ 25 องศาเซลเซียส เป็นเวลา 14 วัน พบว่า พริกขี้หนูสดในตลาดทั้ง 4 แห่ง พบว่ามีการ ปนเปื้อนของเชื้อ *C. capsici* ทั้ง 4 แห่ง โดยตลาดที่พบมากที่สุดคือ ตลาดธานินทร์ และรองลงมาคือ ตลาดรวมโชค ตลาดเมืองใหม่ และตลาดต้นพยอม โดยมีเปอร์เซ็นต์การปนเปื้อนเท่ากับ 83.20, 80.80, 80.20 และ 10.92 เปอร์เซ็นต์ ตามลำดับ (ตาราง 7)

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ตาราง 7 เปอร์เซ็นต์สารคลอไพริฟอสตกค้าง และเปอร์เซ็นต์การปนเปื้อนเชื้อ C. capsici ในพริกขี้หนูสด จากตลาดทั้ง 4 แห่ง ในจังหวัดเชียงใหม่

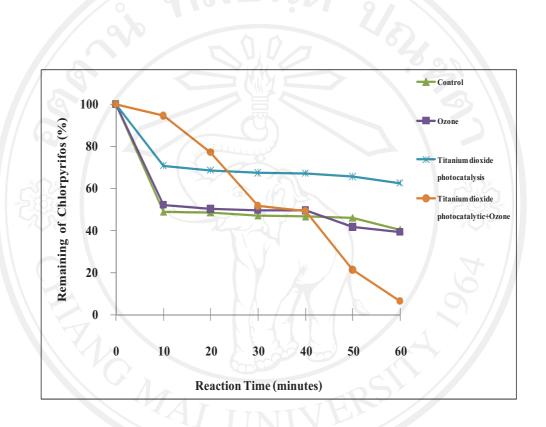
	สัปดาห์	สถานที่	เปอร์เซ็นต์สารตกค้าง	เปอร์เซ็นต์
ระยะเวลา				การปนเปื้อน
เดือน	1	ตลาดเมืองใหม่	45.16	80.20
	2	ตลาดต ้ นพยอม	100.00	10.92
ริงหาคม พ.ศ .	3	ตลาดรวมโชก	38.71	80.80
2552	4	ตลาดธานินทร์	54.21	83.20
STO				1 STO

การทดลองที่ 2 การศึกษากรรมวิธีที่เหมาะสมการใช้โอโซนและปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่ง ของไททาเนียมไดออกไซด์ ในการลดสารคลอไพริฟอสตกค้าง และลดการ ปนเปื้อนเชื้อ Colletotrichum capsici ในหลอดทดลอง

2.1 ผลต่อการลดสารคลอไพริฟอสตกค้างมาตรฐานในหลอดทดลอง

จากการทดลองใช้ชุดปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ร่วมกับ โอโซน ในการลดสารคลอไพริฟอสตกค้าง ที่เป็นสารละลายมาตรฐานมีความเข้มข้น 1 ppm เป็น เวลา 1 ชั่วโมง พบว่าประสิทธิภาพของชุดการทดลองที่ใช้ปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของ ไททาเนียมไดออกไซด์ร่วมกับโอโซน ต่อการลดสารคลอไพริฟอสตกค้างในสภาพหลอดทดลอง สามารถเพิ่มขึ้นได้เมื่อระยะเวลาในการทำปฏิกิริยานานขึ้น โดยการใช้ชุดการทดลองด้วยปฏิกิริยา เคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ร่วมกับโอโซนสามารถลดสารคลอไพริฟอสตกค้างให้มีเปอร์เซ็นต์การลดลงให้ต่ำลงได้ดีที่สุดถึง 6.29 เปอร์เซ็นต์ ซึ่งเมื่อเปรียบเทียบกับชุด การทดลองอื่นๆ จะพบว่าในชุดการทดลองที่ใช้ปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียม-ใดออกไซด์อย่างเดียวมีประสิทธิภาพในการลดสารคลอไพริฟอสตกค้างได้ต่ำที่สุดเพียง 62.32 เปอร์เซ็นต์ และในชุดการทดลองที่ใช้โอโซนอย่างเดียวก็มีประสิทธิภาพในการลดสารคลอไพริฟอสตกค้างได้ต่ำที่สุดเพียง 63.32 เปอร์เซ็นต์ และในชุดการทดลองที่ใช้โอโซนอย่างเดียวก็มีประสิทธิภาพในการลดสารคลอไพริฟอสตกค้างได้แก่ไม่มีความแตกต่างทางสถิติกับชุดควบคุม (ภาพ 18)

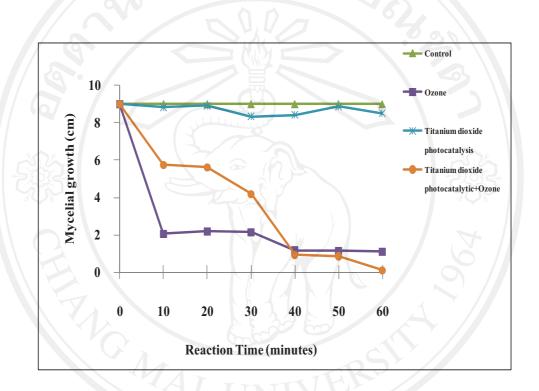
2.2 ผลต่อการเจริญของเชื้อ Colletotrichum capsici ในจานเพาะเลี้ยงเชื้อ

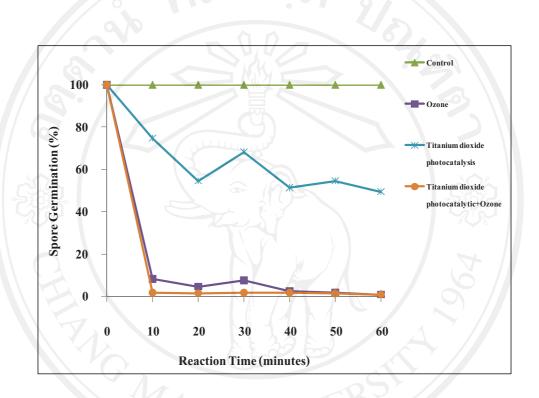

2.2.1 ผลต่อการเจริญของเส้นใย

จากการทดลองด้วยชุดปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ร่วมกับ โอโซน ในการควบกุมการเจริญของเส้นใยของเชื้อ Colletotrichum capsici ในจานเพาะเลี้ยงเชื้อ พบว่า ที่เวลา 60 นาที ในชุดการทดลองที่ใช้ปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียม- ไดออกไซด์ร่วมกับโอโซน และชุดการทดลองที่ใช้โอโซนอย่างเดียว สามารถยับยั้งการเจริญของ เส้นใยได้ดีและไม่มีความแตกต่างกันอย่างมีนัยสำคัญ โดยมีค่าเท่ากับ 0.09 และ 1.09 เซนติเมตร ตามลำดับ ซึ่งจากการใช้ชุดการทดลองที่ใช้ปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียม- ไดออกไซด์อย่างเดียวเปรียบเทียบกับชุดควบคุม จะพบว่ามีประสิทธิภาพในการยับยั้งการเจริญของ เส้นใยที่ไม่แตกต่างกันทางสถิติ โดยมีค่าเท่ากับ 8.52 เซนติเมตร (ภาพ 19)

2.2.2 ผลต่อการงอกของสปอร์

จากการใช้ปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ร่วมกับโอโซน ในการ ควบคุมการงอกของสปอร์ของเชื้อ Colletotrichum capsici ในจานเพาะเลี้ยงเชื้อ พบว่าที่เวลา 60 นาที ชุดการทดลองที่ปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ร่วมกับโอโซน มีเปอร์เซ็นต์การงอกของสปอร์ที่ไม่แตกต่างกันทางสถิติกับชุดที่ใช้โอโซนอย่างเดียว ซึ่งจากการ ทดลองจะเห็นได้ว่าตลอดระยะเวลาในการทดลองในชุดการทดลองที่ใช้โอโซนอย่างเดียว และชุดที่ ใช้ปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ร่วมกับโอโซน มีเปอร์เซ็นต์การงอกของสปอร์ที่ต่ำมากจนมีค่าเกือบเป็นศูนย์ แต่ในชุดการทดลองที่ใช้ปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ร่วมกับโอโซน มีเปอร์เซ็นต์การงอกของสปอร์ได้น้อย มากโดยมีเปอร์เซ็นต์การงอกของสปอร์เท่ากับ 49.40 เปอร์เซ็นต์ และเมื่อเปรียบเทียบกับชุดควบคุม พบว่าไม่มีความแตกต่างกันอย่างมีนัยสำคัญ (ภาพ 20)


Copyright[©] by Chiang Mai University All rights reserved


ภาพ 18 ผลของการสลายตัวของสารคลอไพริฟอสตกค้าง จากการใช้ปฏิกิริยาเคมีที่ใช้แสงเป็น ตัวเร่งของไททาเนียมไดออกไซด์ร่วมกับโอโซน

Copyright by Chiang Mai University

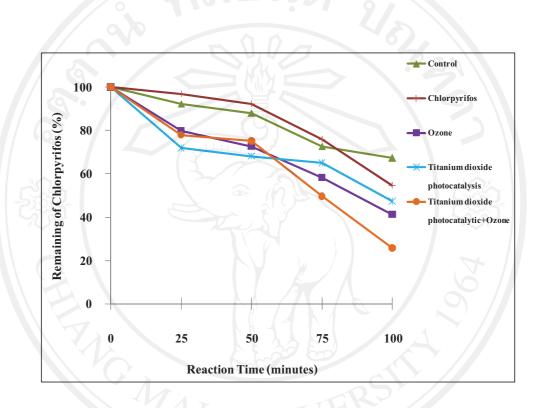
All rights reserved

ภาพ 19 ผลของกรรมวิธีที่ใช้ปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ร่วมกับ โอโซน โอโซนอย่างเดียว และปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียม-ไดออกไซด์อย่างเดียว ในการยับยั้งการเจริญของเส้นใย Colletotrichum capsici

ภาพ 20 ผลของกรรมวิธีที่ใช้ปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมใดออกไซด์ร่วมกับ โอโซน โอโซนอย่างเดียว และปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียม-ใดออกไซด์อย่างเดียว ในการควบคุมการงอกของสปอร์ของเชื้อ Colletotrichum capsici

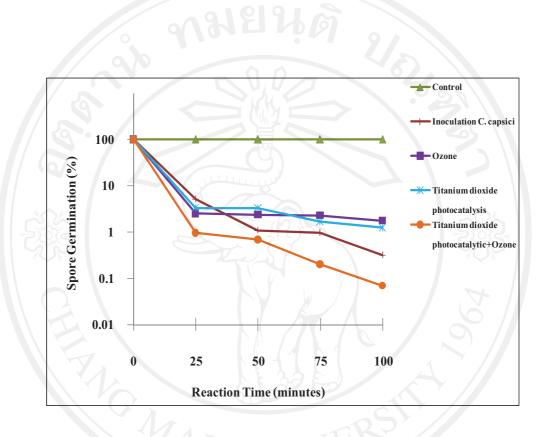
การทดลองที่ 3 คึกษาการใช้โอโซนและปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ ในการล้างพริกสด เพื่อลดสารคลอไพริฟอสตกค้าง และลดการปนเปื้อนเชื้อ Colletotrichum capsici

3.1 ผลของการใช้โอโซนและปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ ต่อการลดสารคลอไพริฟอสตกค้างในพริกสด

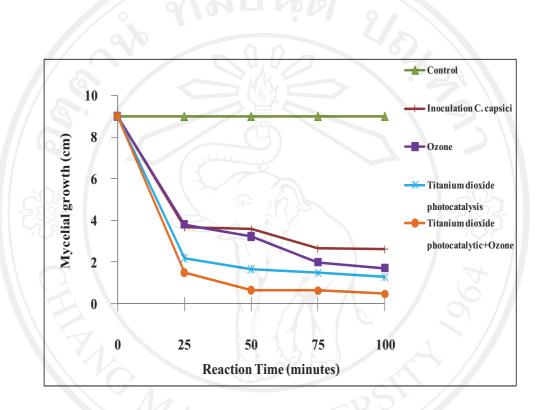

จากการศึกษากรรมวิธีและระยะเวลาในการทดลองด้วยการใช้ชุดการทดลองที่ใช้ปฏิกิริยาเคมี ที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ร่วมกับโอโซน ต่อการลดสารคลอไพริฟอสตกค้างที่ ความเข้มข้น 1 ppm โดยนำพริกสดมาแช่ในสารคลอไพริฟอสนานเป็นเวลา 30 นาที แล้วนำไปล้าง กับน้ำที่มีโอโซนร่วมกับปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ เป็นเวลา 25, 50, 75 และ 100 นาที จากการทดลองพบว่า การใช้ชุดการทดลองด้วยปฏิกิริยาเคมีที่ใช้แสงเป็น ตัวเร่งของไททาเนียมไดออกไซด์ร่วมกับโอโซนในการนำไปล้างพริกสดให้ผลดีกว่าการใช้ ปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ เวลา 100 นาที ชุดการทดลองที่ใช้ปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ ร่วมกับโอโซนให้ผลดีที่สุด คือ สามารถลดสารคลอไพริฟอสตกค้างให้ลดลงได้ต่ำลงได้ถึง 25.65 เปอร์เซ็นต์ ในขณะที่ชุดการทดลองที่ใช้ปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ และใช้โอโซนอย่างเดียวสามารถลดลงได้ 47.28 และ 41.32 เปอร์เซ็นต์ ตามลำดับ ซึ่งเมื่อนำค่าที่ได้ จากทุกชุดการทดลองมาเปรียบเทียบกับชุดที่จุ่มสารและปลูกเชื้อ และชุดควบคุม (น้ำกลั่น) จะพบว่าทุกชุดการทดลองมีความแตกต่างกันอย่างมีนัยสำคัญ (ภาพ 21)

3.2 ผลของการใช้โอโซนและปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ ต่อการลดการปนเปื้อนเชื้อ Colletotrichum capsici ในพริกสด

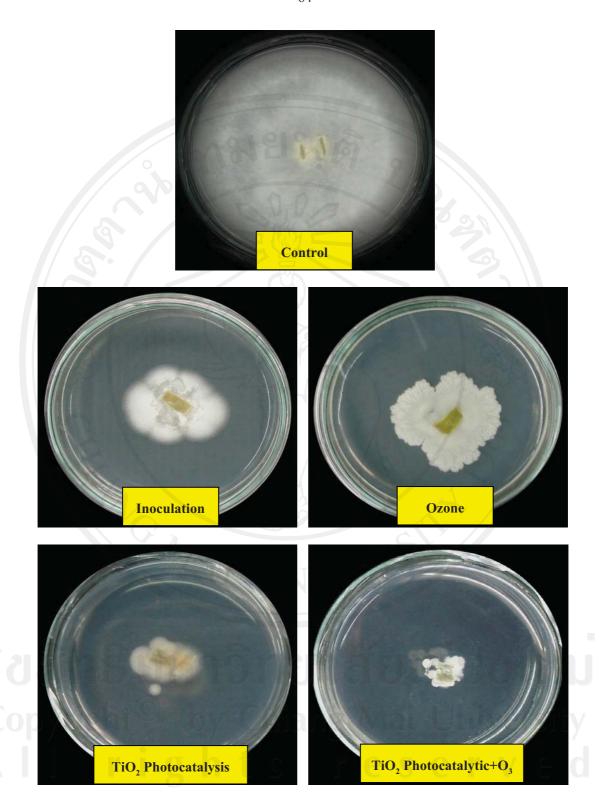
จากการศึกษากรรมวิธีและระยะเวลาในการใช้ปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียม-ไดออกไซด์ร่วมกับโอโซน นำไปล้างพริกสดในการควบคุมการเจริญเติบโตของเชื้อ C. capsici เป็นเวลา 25, 50, 75 และ 100 นาที ผลปรากฏว่าที่เวลา 25 นาที ในทุกชุดการทดลองมีผลต่อการ ยับยั้งการเจริญเติบโตของเชื้อได้ดีเมื่อเปรียบเทียบกับชุดควบคุม โดยในชุดที่ใช้ปฏิกิริยาเคมีที่ใช้ แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ร่วมกับโอโซน สามารถลดเปอร์เซ็นต์การงอกของสปอร์ และการเจริญของเส้นใยได้ดีที่สุดมีค่าเท่ากับ 0.07 เปอร์เซ็นต์และ 0.50 เซนติเมตร (ภาพ 22 และ 23) ซึ่งทำให้เปอร์เซ็นต์การเจริญเติบโตของเชื้อมีความแตกต่างกันอย่างมีนัยสำคัญ เมื่อเปรียบเทียบ กับชุดการทดลองที่ใช้ปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ ชุดที่ใช้โอโซน อย่างเคียว ชุดที่จุ่มสารตกค้างและปลูกเชื้อและชุดควบคุม และนอกจากนี้ยังพบว่าตลอดระยะเวลา การทดลองที่เวลา 100 นาที ชุดการทดลองที่ใช้ปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียม-ไดออกไซด์ร่วมกับโอโซน สามารถควบคุมการเจริญเติบโตของเชื้อ C. capsici ให้มีเปอร์เซ็นต์ที่ต่ำ ที่สุดตลอดระยะเวลาในการทดลอง (ภาพ 24)



ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved


ภาพ 21 ผลของการลดสารตกค้างคลอไพริฟอสในพริกสด ที่ผ่านการล้างด้วยน้ำที่มีโอโซน ร่วมกับปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์

All rights reserved



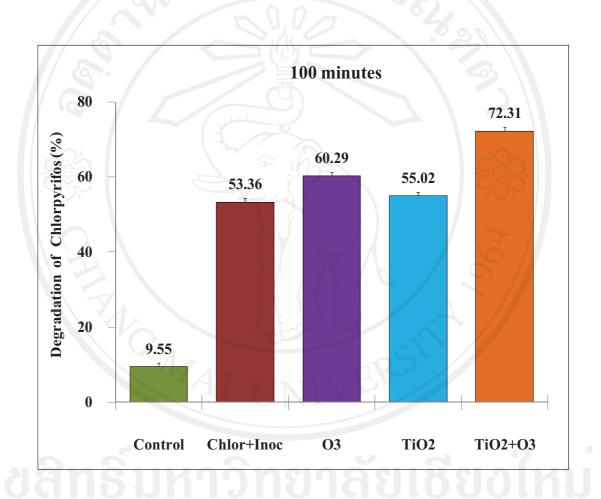
ภาพ 22 ผลของการควบคุมการงอกของสปอร์ของเชื้อ C. capsici ในพริกสด ที่ผ่านการล้างด้วย น้ำที่มีโอโซนร่วมกับปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์

Copyright[©] by Chiang Mai University All rights reserved

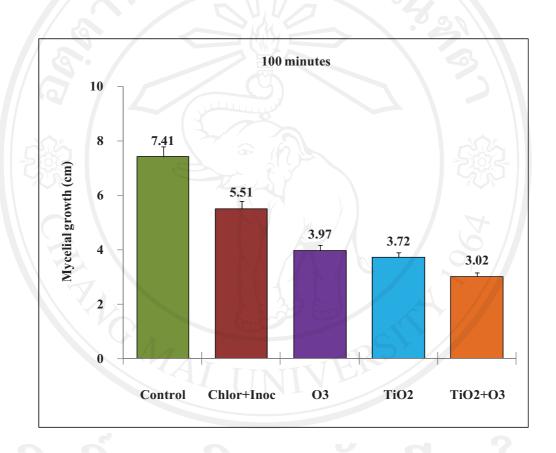
ภาพ 23 ผลของการยับยั้งและควบคุมการเจริญเติบโตของเส้นใยของเชื้อ C. capsici ในพริกสค
ที่ผ่านการล้างด้วยน้ำที่มีโอโซนร่วมกับปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไคออกไซค์

ภาพ 24 ผลของการใช้ปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ร่วมกับโอโซน ในการควบคุมและยับยั้งการเจริญเติบโตของเส้นใยเชื้อ C. capsici ในพริกสด ที่ผ่านการ ล้างเป็นเวลา 25 นาที

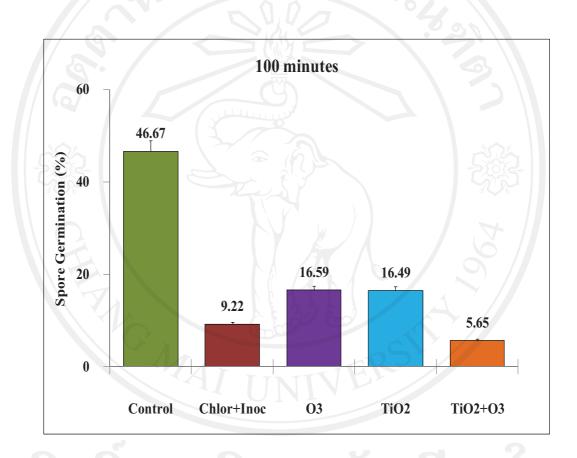
ภาพ 25 ผลของการใช้ปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ร่วมกับโอโซน ในการควบคุมและยับยั้งการเจริญเติบโตของเส้นใยเชื้อ C. capsici ในพริกสด ที่ผ่านการ ล้างเป็นเวลา 100 นาที


การทดลองที่ 3.3 ศึกษาผลร่วมของการใช้โอโซนและปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของ ไททาเนียมไดออกไซด์ ในการล้างพริกสด เพื่อลดสารคลอไพริฟอสตกค้าง และ ลดการปนเปื้อนของเชื้อ Colletotrichum capsici

จากการนำพริกสดมาล้างด้วยปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ ร่วมกับโอโซน เพื่อลดสารคลอไพริฟอสตกค้าง เป็นเวลา 100 นาที จะพบว่าผลการทำงานร่วมกัน ของปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์กับโอโซนให้ผลที่ดีในการลด ปริมาณสารคลอไพริฟอสตกค้างได้ถึง 72.31 เปอร์เซ็นต์ และในการล้างด้วยชุดการทดลองที่ใช้ ปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ และชุดการทดลองที่ใช้โอโซนอย่าง เดียว พบว่าทั้งสองชุดการทดลองนี้สามารถลดปริมาณสารคลอไพริฟอสตกค้างให้ผลดีเท่าๆ กันโดยในการใช้ชุดการทดลองค้วยปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ อย่างเดียวจะมีเปอร์เซ็นต์การสลายตัวของสารคลอไพริฟอสตกค้างเท่ากับ 55.02 เปอร์เซ็นต์ และในชุดการทดลองที่ใช้โอโซนอย่างเดียวจะมีเปอร์เซ็นต์เท่ากับ 60.29 เปอร์เซ็นต์ เมื่อนำมาเปรียบเทียบกับชุดควบกุมพบว่ามีความแตกต่างอย่างมีนัยสำคัญโดยที่ชุดการทดลองด้วยปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ และชุดการทดลองที่ใช้โอโซนอย่างเดียวไม่มีความแตกต่างกันทางสถิติ เพราะฉะนั้นในการล้างพริกสดด้วยการใช้การทำงานร่วมกันของปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์กับโอโซน เป็นเวลา 100 นาที จะให้ผลที่ดีในการนำไปลดสารคลอไพริฟอสตกค้างในพริกสดได้ (ภาพ 26)


ทดลองที่ใช้โอโซนอย่างเดียวมีการยับยั้งการเจริญเติบโตที่ไม่มีความแตกต่างกันทางสถิติ ดังนั้นใน การควบคุมและยับยั้งการเจริญเติบโตของเชื้อ C. capsici ในพริกสด การนำพริกสดไปล้างด้วย ปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ร่วมกับโอโซน เป็นเวลา 100 นาที จึงเป็นชุดการทดลองที่ให้ประสิทธิภาพที่ดีในการควบคุมและยับยั้งการเจริญเติบโตของเชื้อ C. capsici ได้

และจากการศึกษาทำให้พบว่าในการใช้ชุดการทดลองด้วยปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของ ไททาเนียมไดออกไซด์ร่วมกับโอโซน เป็นเวลา 100 นาที จึงเป็นกรรมวิธีและระยะเวลาที่ดีที่สุดใน การนำไปล้างพริกสด เพื่อลดสารคลอไพริฟอสตกค้าง และลดการปนเปื้อนของเชื้อ *C. capsici*



ภาพ 26 ผลของปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ร่วมกับโอโซน ต่อการ สลายตัวของสารคลอไพริฟอสตกค้าง ในพริกสด เมื่อนำมาล้างเป็นเวลา 100 นาที

ภาพ 27 ผลของปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ร่วมกับโอโซน ต่อการ ยับยั้งการเจริญของเส้นใยของเชื้อ Colletotrichum capsici ในพริกสด เมื่อนำมาล้างเป็น เวลา 100 นาที

ภาพ 28 ผลของปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ร่วมกับโอโซน ต่อการ งอกของสปอร์ของเชื้อ Colletotrichum capsici ในพริกสด เมื่อนำมาล้างเป็นเวลา 100 นาที

การทดลองที่ 4 ศึกษาผลของการใช้โอโซนและปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียม-ไดออกไซด์ ต่อการเปลี่ยนแปลงทางกายภาพ และเคมีของพริกสด ระหว่างการ เก็บรักษา

จากการทดลองโดยนำพริกสด ไปทำการจุ่มด้วยสารคลอไพริฟอสตกค้างและปลูกเชื้อด้วย Colletotrichum capsici และนำไปล้างด้วยน้ำที่มีโอโซนร่วมกับปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของ ไททาเนียมไดออกไซด์ ซึ่งทำการล้างด้วยระยะเวลาที่ดีที่สุดจากการทดลองที่ 3.1 และ 3.2 คือ 100 นาที แล้วนำไปเก็บรักษาที่อุณหภูมิ 5 และ 13 องสาเซลเซียส เป็นเวลา 4 สัปดาห์ โดยจะสุ่มตรวจ ตัวอย่างทุกๆ 1 สัปดาห์ และมีการวางแผนแบบสุ่มตลอด (CRD) แบ่งออกเป็นจำนวน 3 ชุดคือ ชุดควบคุมและชุดที่จุ่มสารตกค้างและปลูกเชื้อ และชุดที่ใช้น้ำที่มีโอโซนร่วมกับปฏิกิริยาเคมีที่ใช้ แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ร่วมกัน เป็นจำนวน 5 ซ้ำๆ ละ 50 กรัม เพื่อไปทำการ วิเคราะห์ดังนี้

เปอร์เซ็นต์การสูญเสียน้ำหนัก

จากการนำพริกสดที่ได้จากการล้างทั้ง 3 วิธีการไปเก็บรักษา พบว่าเมื่อทำการเก็บรักษาพริกสด ที่อุณหภูมิ 5 และ 13 องศาเซลเซียส ปรากฏว่าที่อุณหภูมิ 5 องศาเซลเซียส ในชุดที่ทำการล้างด้วย น้ำที่มีโอโซนร่วมกับปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ มีเปอร์เซ็นต์การ สูญเสียน้ำหนักมากที่สุดและเพิ่มขึ้นอย่างต่อเนื่อง และมีแนวโน้มที่จะสูญเสียเพิ่มมากขึ้น โดยใน สัปดาห์สุดท้ายของการเก็บรักษา (สัปดาห์ที่ 4) พบว่ามีเปอร์เซ็นต์การสูญเสียน้ำหนักสูงที่สุดเท่ากับ 6.86 เปอร์เซ็นต์ และในชุดที่เป็นชุดควบคุมและชุดที่จุ่มสารตกค้างและปลูกเชื้อ มีเปอร์เซ็นต์การ สูญเสียน้ำหนักเพิ่มมากขึ้นอย่างต่อเนื่องตลอดทั้ง 4 สัปดาห์ และ ไม่มีความแตกต่างกันทางสถิติ แต่ เมื่อเปรียบเทียบกับชุดที่ล้างด้วยน้ำที่มีโอโซนร่วมกับปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของ ใททาเนียมใดออกใชด์จะพบว่ามีความแตกต่างกับทั้งสองชุดการทดลองอย่างมีนัยสำคัญ (ภาพ 29a) และการเก็บรักษาพริกสคที่อุณหภูมิ 13 องศาเซลเซียส พบว่าในชุคที่ล้างด้วยน้ำที่มีโอโซน ร่วมกับปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ มีเปอร์เซ็นต์การสูญเสียน้ำหนัก ที่มากที่สุดและเพิ่มสูงขึ้นอย่างต่อเนื่องตลอดระยะเวลาในการเก็บรักษา และในชุดที่ทำการจุ่ม สารตกค้างและปลูกเชื้อ มีเปอร์เซ็นต์การสูญเสียน้ำหนักที่เพิ่มมากขึ้นจากวันที่ 1 ของการเก็บรักษา ซึ่งมีการเพิ่มสูงขึ้นเป็น 2 เท่า ในสัปดาห์ที่ 3 ของการเก็บรักษา และอาจมีแนวโน้มเพิ่มขึ้น ส่วนใน ชุดควบคุมมีเปอร์เซ็นต์การสูญเสียน้ำหนักที่สูงเช่นกัน แต่ในสัปดาห์ที่ 3 ถึง สัปดาห์ที่ 4 ของการ ้เก็บรักษา พบว่ามีเปอร์เซ็นต์การสูญเสียน้ำหนักที่เพิ่มขึ้นเพียงเล็กน้อย และนอกจากนี้จะพบว่าใน ชุดควบคุมเป็นชุดที่มีการสูญเสียน้ำหนักของพริกสดต่ำที่สุด ซึ่งเมื่อเปรียบเทียบกับทั้งสองชุดการ

ทดลองพบว่าไม่มีความแตกต่างกันอย่างมีนัยสำคัญ โดยมีค่าเท่ากับ 3.17, 4.27 และ 5.07 เปอร์เซ็นต์ ตามลำดับ (ภาพ 29b)

และจากการเปรียบเทียบเปอร์เซ็นต์การสูญเสียน้ำหนักของทุกชุดการทดลอง และทั้งสอง อุณหภูมิในการเก็บรักษา (5 และ 13 องศาเซลเซียส) พบว่าในชุดการทดลองที่ใช้ล้างด้วยน้ำที่มี โอโซนร่วมกับปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ร่วมกัน และเก็บรักษาที่ อุณหภูมิ 5 องศาเซลเซียส เป็นชุดที่ดีที่สุดและมีเปอร์เซ็นต์การสูญเสียน้ำหนักของพริกสดแตกต่าง อย่างมีนัยสำคัญกับชุดควบคุม และชุดที่ทำการจุ่มสารตกค้างและปลูกเชื้อ ที่เก็บรักษาที่อุณหภูมิ 5 และ 13 องศาเซลเซียส

การเปลี่ยนแปลงของสีเปลือก

จากการเก็บรักษาพริกสด หลังล้างด้วยชุดการทดลองทั้งสามชุดไว้ที่อุณหภูมิ 5 และ 13 องศา เซลเซียส พบว่าที่อุณหภูมิ 5 องศาเซลเซียส ไม่พบการเปลี่ยนแปลงของสีเปลือกของพริกสด (L*, a* และ b*) ในทุกชุดการทดลอง ซึ่งเมื่อนำไปเปรียบเทียบกันจะพบว่าไม่มีความแตกต่างกันทาง สถิติ แต่ในสัปดาห์ที่ 2 ของการเก็บรักษา ค่า b* ของทุกชุดการทดลอง มีค่าที่เพิ่มขึ้นจากเดิม และมี ค่าลดลงในสัปดาห์ที่ 3 ซึ่งไม่มีผลต่อการเปลี่ยนแปลงของสีเปลือกของพริกสดทั้งหมด โดยพริกสด ของในทุกชุดการทดลองที่เก็บที่อุณหภูมิ 5 องศาเซลเซียส มีสีเขียวสดและจะเริ่มเปลี่ยนแปลงสีเมื่อ พริกเริ่มเข้าสู่ระยะของการสุก (ภาพ 30a) ส่วนที่อุณหภูมิ 13 องศาเซลเซียส จะพบว่ามีการ เปลี่ยนแปลงของสีเปลือกจากสัปดาห์ของการเก็บรักษา โดยในสัปดาห์ที่ 3 ของการเก็บรักษา จะมี ค่าความสว่างมากขึ้น (L*) และ สีเปลือกของพริกสดมีสีเขียวสดลดลงเริ่มจะเป็นสีแดง (a*) และใน สัปดาห์ที่ 3 และ 4 ของการเก็บรักษา จะมีค่า b* ของสีเปลือกของพริกสดเริ่มเปลี่ยนสีจากเขียวสด เป็นสีดำคล้ำ, สีแดง และสีส้มเหลือง มีการเปลี่ยนแปลงตามระยะการสุกของพริกสด (ภาพ 31b และ 32b)

ซึ่งจากการเปรียบเทียบของทุกชุดการทดลอง และที่อุณหภูมิ 5 และ 13 องศาเซลเซียส จะ พบว่า ในทุกชุดการทดลองไม่มีความแตกต่างกันอย่างมีนัยสำคัญ ซึ่งในการเปลี่ยนแปลงของสี เปลือกของพริกสด มีการเปลี่ยนแปลงไปตามระยะเวลาของการสุกของพริกสด โดยจะมีสีเขียวสด ในตอนแรกของการเก็บรักษาและจะเปลี่ยนเป็นสีแดง สีส้มแดง สีส้มดำ และสีเขียวคำคล้ำ (ภาพ 33 และ 34)

ปริมาณการปนเปื้อนเชื้อจุลินทรีย์ทั้งหมด

จากการเก็บรักษาพริกสดที่อุณหภูมิ 5 และ 13 องศาเซลเซียส เป็นเวลา 4 สัปดาห์ พบว่าที่ อุณหภูมิ 5 องศาเซลเซียส ในชุดที่ล้างพริกสดด้วยน้ำที่มีโอโซนร่วมกับปฏิกิริยาเคมีที่ใช้แสงเป็น ตัวเร่งของไททาเนียมไดออกไซด์ มีปริมาณการปนเปื้อนของเชื้อจุลินทรีย์ทั้งหมดต่ำที่สุดเท่ากับ 0.21x10³ CFU/ml และเมื่อเทียบกับชุดควบคุมและชุดที่จุ่มสารตกค้างและปลูกเชื้อ มีจำนวนปริมาณ การปนเปื้อนของเชื้อจุลินทรีย์ทั้งหมดที่แตกต่างกันอย่างมีนัยสำคัญ มีค่าเท่ากับ 1.00x10³ และ 1.00x10³ CFU/ml ตามลำดับ (ภาพ 35a) ส่วนที่อุณหภูมิ 13 องศาเซลเซียส พบว่าชุดใช้น้ำที่มีโอโซนร่วมกับปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ มีการปริมาณการ ปนเปื้อนเชื้อจุลินทรีย์ทั้งหมดต่ำที่สุดเช่นเดียวกับที่อุณหภูมิ 5 องศาเซลเซียส ซึ่งมีค่าเท่ากับ 0.07x10³ CFU/ml แต่เมื่อเทียบกับชุดที่จุ่มสารตกค้างและปลูกเชื้อไม่มีความแตกต่างกันทางสถิติ แต่มีความแตกต่างกับชุดควบคุมอย่างมีนัยสำคัญ มีค่าเท่ากับ 1.00x10³ และ 0.26x10³ CFU/ml (ภาพ 35b)

ลักษณะภายนอกโดยรวม

จากละแนนการพิจารณาลักษณะภายนอกโดยรวมต่อพริกสด ที่ทำการเก็บรักษาที่อุณหภูมิ ร และ 13 องสาเซลเซียส เป็นเวลา 4 สัปดาห์ พบว่าพริกสดทั้งสามชุดการทดลองเป็นไปตามเกณฑ์ ของอายุการเก็บรักษา โดยมีเกณฑ์คะแนนที่สูงจากในวันแรกของการเก็บรักษา และมีเกณฑ์ลด ต่ำลงอย่างต่อเนื่องจนถึงสัปดาห์สุดท้ายของการเก็บรักษา แต่ที่อุณหภูมิ 5 องสาเซลเซียส ใน สัปดาห์ที่ 2 ในชุดที่อุ่มสารตกค้างและปลูกเชื้อ มีเกณฑ์คะแนนที่ต่ำกว่าในชุดควบคุมและชุดที่ล้าง ด้วยน้ำโอโซนร่วมกับปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์อย่างมีนัยสำคัญ และมีเกณฑ์คะแนนต่ำที่สุดในสัปดาห์ที่ 4 แต่ไม่มีความแตกต่างทางสถิติกับในชุดควบคุมและชุดที่ ล้างด้วยน้ำโอโซนร่วมกับปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ ซึ่งมีเกณฑ์ คะแนนเท่ากับ 2.60, 2.00 และ 2.50 ตามลำดับ (ภาพ 36a) และที่อุณหภูมิ 13 องสาเซลเซียส พบว่า ในทั้งสามชุดการทดลองมีเกณฑ์คะแนนที่ลดลงอย่างต่อเนื่องตามระยะเวลาของการเก็บรักษา แต่ ในสัปดาห์ที่ 4 พริกสดที่ล้างด้วยน้ำโอโซนร่วมกับปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์มีเกณฑ์คะแนนที่ต่ำกว่าชุดควบคุมและชุดที่จุ่มสารตกค้างและปลูกเชื้อ ซึ่งมีเกณฑ์ คะแนนเท่ากับ 3.40, 2.80 และ 2.00 ตามลำดับ (ภาพ 36b) ซึ่งเมื่อเปรียบเทียบกันทั้งสามชุดการ ทดลองมีเกณฑ์คะแนนการขอมรับที่แตกต่างกันอย่างมีนัยสำคัญ

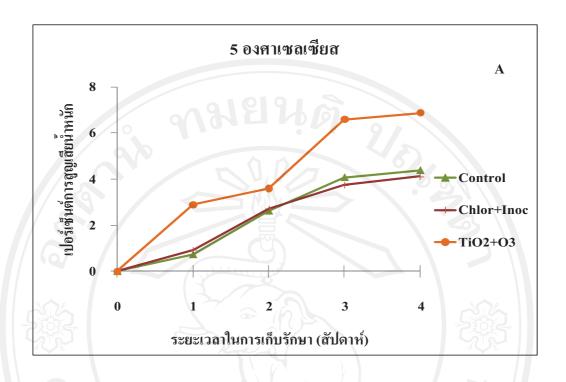
การยอมรับโดยรวม

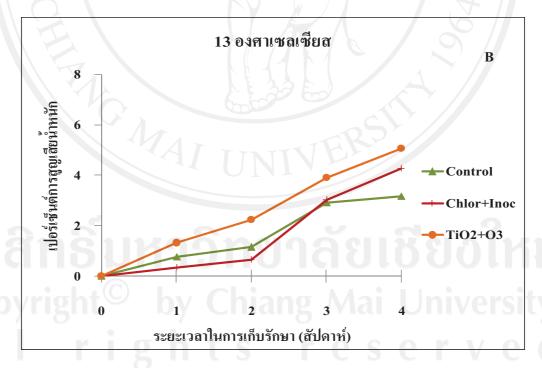
า. สีเปลือก

จากการประเมินโดยการคาดคะเนสีเปลือกของพริกสด พบว่าพริกสดที่เก็บรักษาที่อุณหภูมิ ร องศาเซลเซียส ในสัปดาห์สุดท้ายของการเก็บรักษา ชุดควบคุมและชุดที่จุ่มสารตกค้างและปลูกเชื้อ มีเกณฑ์คะแนนที่เท่ากันและสูงกว่าในพริกสดที่ถ้างด้วยน้ำโอโซนร่วมกับปฏิกิริยาเคมีที่ใช้แสงเป็น ตัวเร่งของไททาเนียมไดออกไซด์ แต่เมื่อเปรียบเทียบกันพบว่ามีเกณฑ์คะแนนการยอมรับที่ไม่ แตกต่างกันทางสถิติ ซึ่งมีคะแนนเท่ากับ 1.40, 1.40 และ 1.25 (ภาพ 37a) และที่อุณหภูมิ 13 องศา เซลเซียส ในทั้งสามชุดการทดลองมีเกณฑ์คะแนนการยอมรับได้ของสีเปลือกพริกสดลดลงอย่าง ต่อเนื่องจากวันแรกของการเก็บรักษา และมีคะแนนการยอมรับได้ของสีเปลือกที่ไม่แตกต่างกันทาง สถิติ แต่ในสัปดาห์สุดท้ายของการเก็บรักษา จะพบว่าในชุดควบคุมมีเกณฑ์คะแนนการยอมรับได้ ของสีเปลือกสูงที่สุดและสูงกว่าชุดที่จุ่มสารตกค้างและปลูกเชื้อ และชุดที่ถ้างด้วยน้ำโอโซนร่วมกับ ปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ มีคะแนนเท่ากับ 3.00, 2.40 และ 2.00 ตามลำดับ และจากการเปรียบเทียบชุดที่จุ่มสารตกค้างและปลูกเชื้อ และชุดที่ล้างด้วยน้ำโอโซนร่วมกับ ร่วมกับปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์มีคะแนนการยอมรับได้ของ สีเปลือกไม่แตกต่างกันทางสถิติ แต่แตกต่างกันอย่างมีนัยสำคัญกับชุดควบคุม (ภาพ 37b)

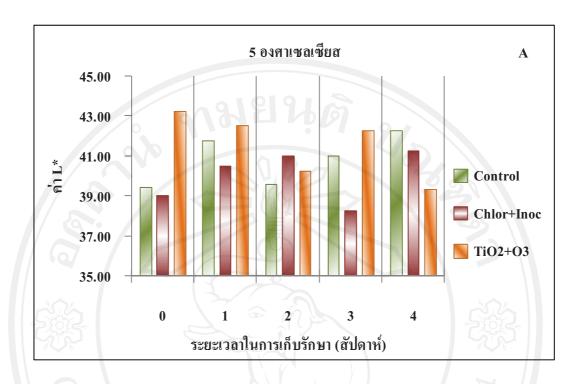
2. กลิ่น

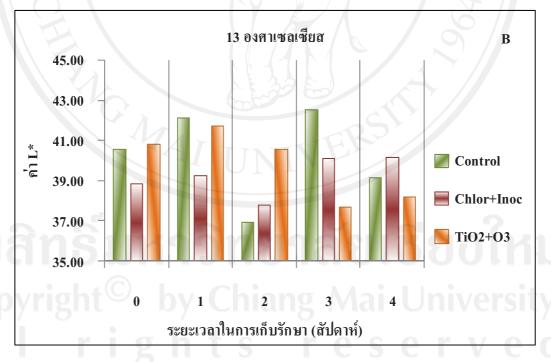
จากคะแนนการยอมรับได้ของกลิ่นพริกสดที่ผ่านการล้างด้วยกรรมวิธีต่างๆ แล้วเก็บรักษาที่ อุณหภูมิ 5 และ 13 องศาเซลเซียส พบว่าที่อุณหภูมิ 5 องศาเซลเซียส ตั้งแต่วันแรกของการเก็บรักษา จนถึงสัปดาห์ที่ 3 ของการเก็บรักษา ในชุดการทดลองทั้งหมดมีคะแนนการยอมรับได้ของกลิ่นพริก สดที่ยอมรับได้เท่ากันทั้งหมดและ ไม่แตกต่างกันทางสถิติ แต่ในสัปดาห์สุดท้ายของการเก็บรักษา ชุดการทดลองที่ใช้น้ำโอโซนร่วมกับปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ มีคะแนนการยอมรับได้สูงกว่าชุดที่จุ่มสารตกค้างและปลูกเชื้อ และชุดควบคุม แต่เมื่อเปรียบเทียบ กันพบว่าไม่มีความแตกต่างกันอย่างมีนัยสำคัญ (ภาพ 38a) และที่อุณหภูมิ 13 องศาเซลเซียส เต่ ในสัปดาห์ที่ 4 ของการเก็บรักษา ชุดการทดลองที่ใช้น้ำโอโซนร่วมกับปฏิกิริยาเคมีที่ใช้แสงเป็น ตัวเร่งของไททาเนียมไดออกไซด์ และชุดที่จุ่มสารตกค้างและปลูกเชื้อมีคะแนนการยอมรับได้ที่ เท่ากัน และสูงกว่าชุดควบคุม แต่เปรียบเทียบกันกับไม่มีความแตกต่างกันทางสถิติ (ภาพ 38b)

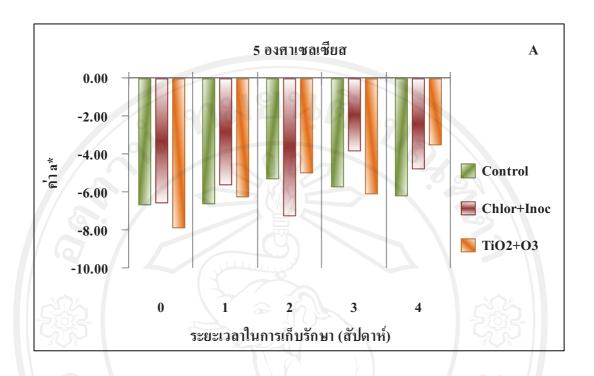

3. รูปร่าง

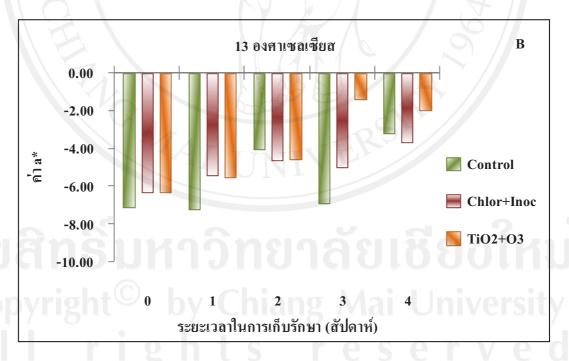

การขอมรับ ได้ของรูปร่างจากการประเมิน พบว่าในการเก็บรักษาที่อุณหภูมิ 5 องศาเซลเซียส ชุดการทดลองทั้งหมดมีคะแนนการขอมรับ ได้ของรูปร่างของพริกสดสูงที่สุด รองลงมาคือชุดที่ล้าง ด้วยน้ำโอโซนร่วมกับปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ และชุดที่จุ่มสาร ตกค้างและปลูกเชื้อซึ่งมีคะแนนต่ำที่สุด แต่เมื่อนำมาเปรียบเทียบกันชุดที่จุ่มสารตกค้างและปลูก เชื้อ และชุดที่ล้างด้วยน้ำโอโซนร่วมกับปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ มีคะแนนการขอมรับที่ไม่แตกต่างกันทางสถิติ แต่แตกต่างกันอย่างมีนัยสำคัญกับชุดควบคุม (ภาพ 39a) ซึ่งในการเก็บรักษาที่อุณหภูมิ 13 องศาเซลเซียส พบว่ามีคะแนนการขอมรับได้ของรูปร่างของ พริกสด ในทุกชุดการทดลองสูงกว่าการเก็บรักษาที่อุณหภูมิ 5 องศาเซลเซียส โดยชุดที่ล้างพริกสด ด้วยน้ำโอโซนร่วมกับปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์มีคะแนนการ ขอมรับได้สูงที่สุด แต่ไม่มีความแตกต่างกันทางสถิติกับชุดที่จุ่มสารตกค้างและปลูกเชื้อ และชุด ควบคุม ซึ่งมีคะแนนการขอมรับเท่ากับ 2.20, 2.40 และ 2.75 ตามลำดับ (ภาพ 39b)

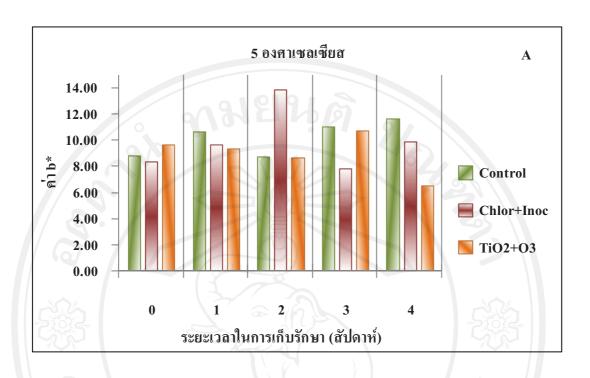
จากคะแนนการยอมรับโดยรวมทั้งหมดของพริกสด ที่เก็บรักษาที่อุณหภูมิ 5 และ 13 องศา เซลเซียส ในสัปดาห์ที่ 4 จะพบว่าผู้บริโภคให้เกณฑ์การยอมรับได้ของพริกสดอยู่ในเกณฑ์ที่ชอบใน ระดับปานกลาง

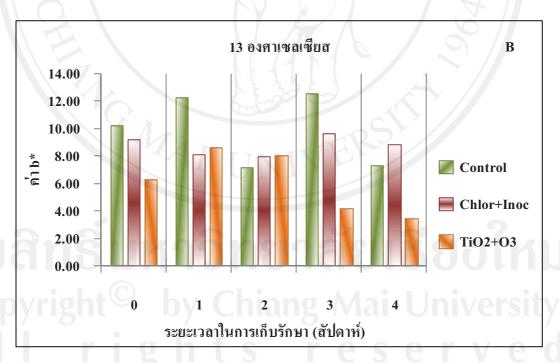

ปริมาณสาร Capsaicin


จากการวิเคราะห์ปริมาณสาร capsaicin ในพริกหลังจากผ่านการล้างด้วยน้ำโอโซนร่วมกับ ปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมใดออกไซด์ เป็นเวลา 100 นาที และเก็บรักษาที่ อุณหภูมิ 5 และ 13 องศาเซลเซียส เป็นเวลา 4 สัปดาห์ พบว่าพริกสดที่ผ่านการล้างด้วยน้ำโอโซน ร่วมกับปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของไททาเนียมใดออกไซด์ ที่อุณหภูมิ 5 องศาเซลเซียส ในสัปดาห์ที่ 4 ของการเก็บรักษา จะมีผลทำให้ปริมาณของสาร capsaicin มากกว่าในชุดควบคุม และชุดที่ทำการจุ่มสารตกค้างและปลูกเชื้อ โดยมีค่าเท่ากับ 589.87 มิลลิกรัมต่อกิโลกรัม แต่ที่ อุณหภูมิ 13 องศาเซลเซียส จะมีปริมาณของสาร capsaicin ที่น้อยกว่าชุดที่ทำการจุ่มสารตกค้างและ ปลูกเชื้อ มีค่าเท่ากับ 585.58 มิลลิกรัมต่อกิโลกรัม (ภาพ 40)




ภาพ 29 การสูญเสียน้ำหนักของพริกสด ที่ผ่านการล้างด้วยน้ำที่มีปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่ง ของไททาเนียมไดออกไซด์ร่วมกับโอโซน เป็นเวลา 100 นาที และเก็บรักษาที่อุณหภูมิ 5(A) และ 13(B) องศาเซลเซียส เป็นเวลา 4 สัปดาห์



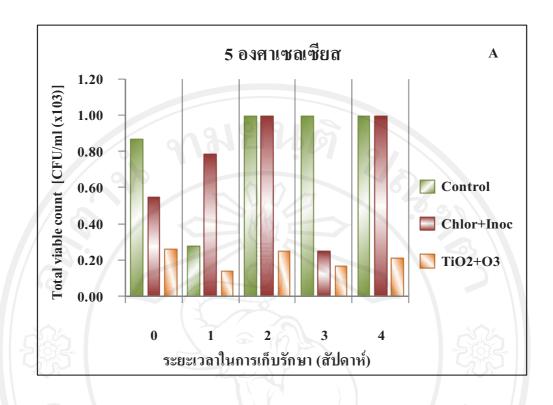

ภาพ 30 ค่า L* ของเปลือกผลพริกสด ที่ผ่านการล้างด้วยน้ำที่มีปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของ ใททาเนียมใดออกใชด์ร่วมกับโอโซน เป็นเวลา 100 นาที และเก็บรักษาที่อุณหภูมิ 5(A) และ 13(B) องศาเซลเซียส เป็นเวลา 4 สัปดาห์

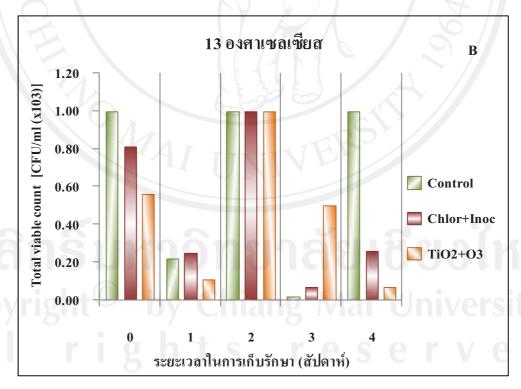
ภาพ 31 ค่า a* ของเปลือกผลพริกสด ที่ผ่านการล้างด้วยน้ำที่มีปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของ ไททาเนียมไดออกไซด์ร่วมกับโอโซน เป็นเวลา 100 นาที และเก็บรักษาที่อุณหภูมิ 5(A) และ 13(B) องศาเซลเซียส เป็นเวลา 4 สัปดาห์

ภาพ 32 ค่า b* ของเปลือกผลพริกสด ที่ผ่านการล้างด้วยน้ำที่มีปฏิกิริยาเคมีที่ใช้แสงเป็นตัวเร่งของ ไททาเนียมไดออกไซด์ร่วมกับโอโซน เป็นเวลา 100 นาที และเก็บรักษาที่อุณหภูมิ 5(A) และ 13(B) องศาเซลเซียส เป็นเวลา 4 สัปดาห์

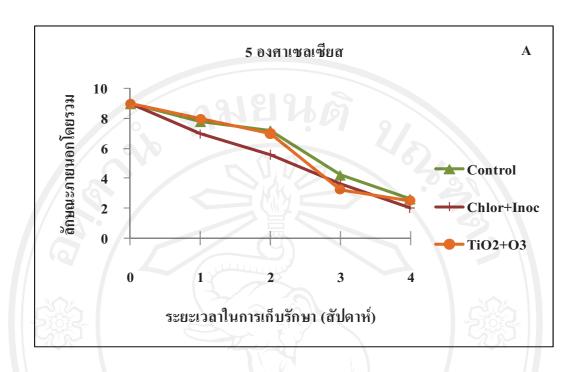
ภาพ 33 สีเปลือกของพริกสด เมื่อเก็บรักษาที่อุณหภูมิ 5 องศาเซลเซียส เป็นระยะเวลา 4 สัปดาห์

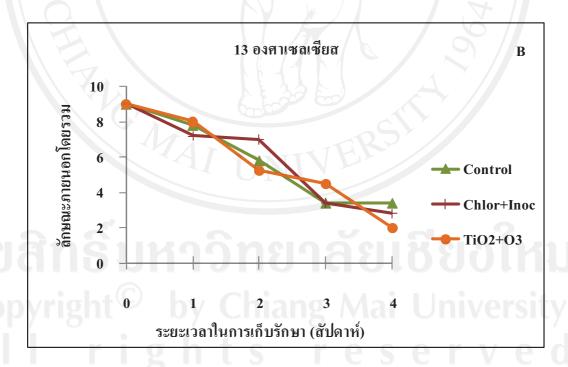
Control

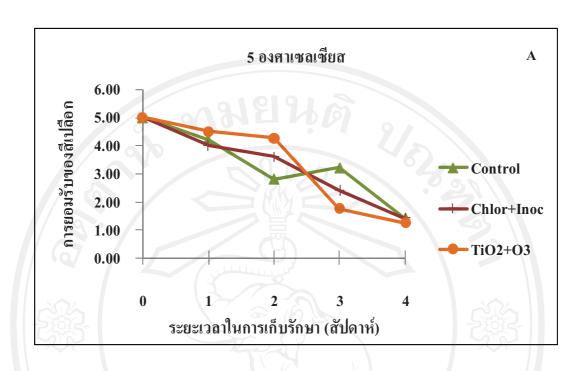

Chlor+Inoc

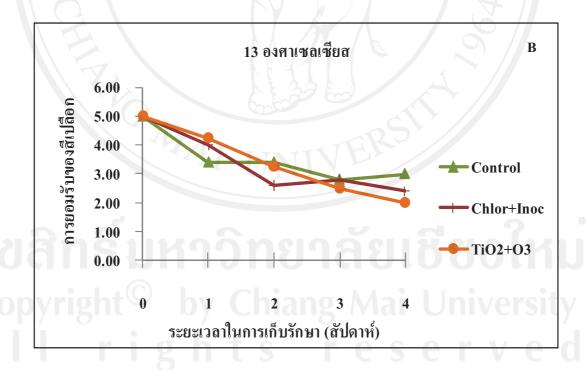


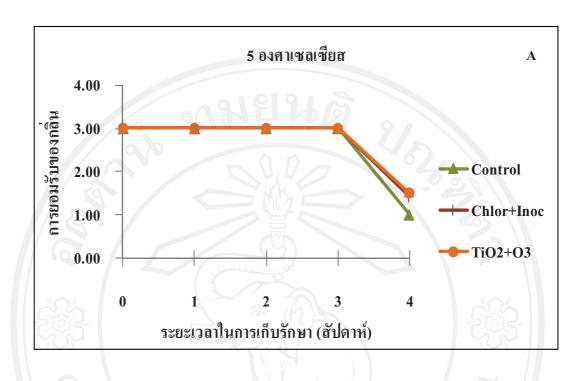
TiO₂ photocatalytic+O₃

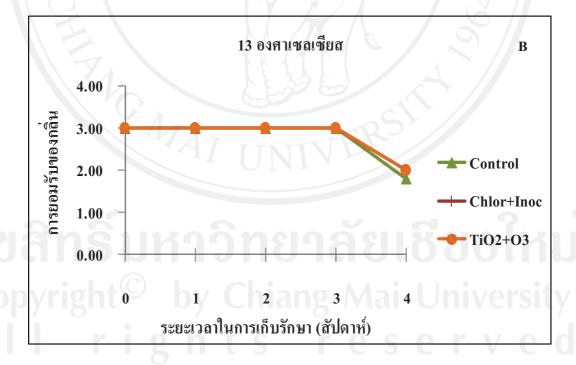


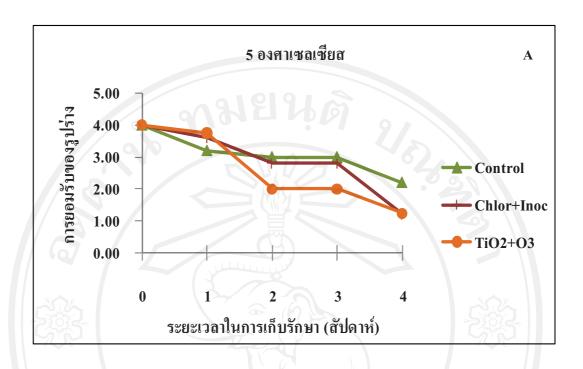

ภาพ 34 สีเปลือกของพริกสด เมื่อเก็บรักษาที่อุณหภูมิ 13 องศาเซลเซียส เป็นระยะเวลา 4 สัปดาห์

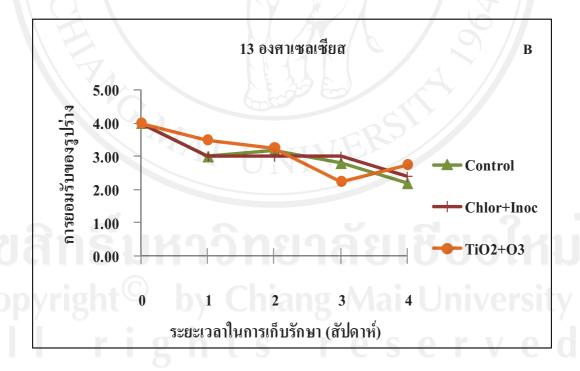


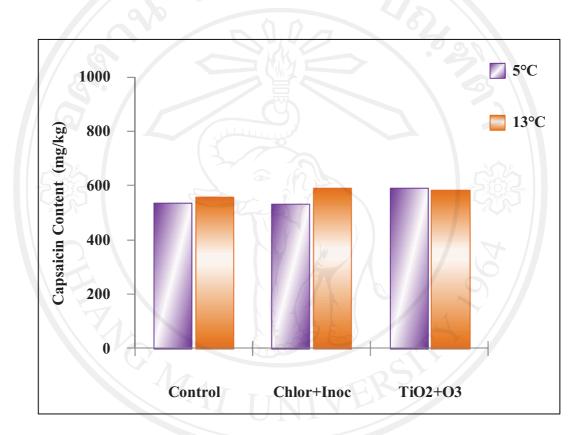

ภาพ 35 ปริมาณการปนเปื้อนของเชื้อจุลินทรีย์ทั้งหมดของพริกสด หลังจากเก็บรักษาที่อุณหภูมิ 5(A) และ 13(B) องศาเซลเซียส เป็นเวลา 4 สัปดาห์




ภาพ 36 การประเมินลักษณะภายนอกของพริกสด หลังจากเก็บรักษาที่อุณหภูมิ 5(A) และ 13(B) องศาเซลเซียส เป็นเวลา 4 สัปดาห์




ภาพ 37 การประเมินการยอมรับโดยรวมของสีเปลือกพริกสด หลังจากเก็บรักษาที่อุณหภูมิ 5(A) และ 13(B) องศาเซลเซียส เป็นเวลา 4 สัปดาห์



ภาพ 38 การประเมินการยอมรับโดยรวมของกลิ่นพริกสด หลังจากเก็บรักษาที่อุณหภูมิ 5(A) และ 13(B) องศาเซลเซียส เป็นเวลา 4 สัปดาห์

ภาพ 39 ประเมินการยอมรับโดยรวมของรูปร่างพริกสด หลังจากเก็บรักษาที่อุณหภูมิ 5(A) และ 13(B) องศาเซลเซียส เป็นเวลา 4 สัปดาห์

ภาพ 40 ปริมาณสาร capsaicin ในพริกสดที่ผ่านการถ้างด้วยน้ำโอโซนร่วมกับปฏิกิริยาเคมีที่ใช้
แสงเป็นตัวเร่งของไททาเนียมไดออกไซด์ เป็นเวลา 100 นาที และเก็บรักษาที่อุณหภูมิ 5
และ 13 องศาเซลเซียส เป็นเวลา 4 สัปดาห์