TABLE OF CONTENTS

ACI	KNOWLEDGEMENT	iii
ABS	STRACT (THAI)	iv
ABS	STRACT (ENGLISH)	vi
TAE	BLE OF CONTENTS	viii
LIS	T OF TABLES	xiii
LIS	r of figures	XV
ABI	BREVIATIONS	xxi
CHA	APTER 1 INTRODUCTION	1
CHA	APTER 2 REVIEW OF LITERATURE	4
2.1	Rice Quality Preferences in Various Countries	4
2.2	Natural Aging Mechanism in Rice	5
2.3	Aging in Relation to Change in Pasting Property of Rice	7
2.4	Aging in Relation to Change in Textural Property of Rice	8
2.5	Aging in Relation to Change in Aroma Characteristic of Rice	9
2.6	Aging in Relation to Changes in Cooking Property and Color of	
	Rice	13
2.7	Influence of Aging on Rice Protein Property	14
2.8	Formation and Reduction of Disulfide Bond in Rice Storage	
	Proteins	15
2.9	Accelerated Aging Process on Physico-chemical Characteristics	1411
quç	and Quality Attributes of Rice and Other Cereals	17
Copy	APTER 3 EFFECTS OF TEMPERATURE AND EXPOSURE	sity
	DURATION ON PASTING PROPERTY,	e d
	TEXTURAL PROPERTY, AND COLOR OF	
	FRESHLY HARVESTED RICE CV. KDML 105	19
3.1	Introduction	19
3.2	Materials and Methods	20

3.2.1 Rice Samples and Preparations	20
3.2.2 Accelerated Aging Treatments	20
3.2.3 Determination for Pasting Property	21
3.2.4 Determination for Textural Property of Cooked Rice	23
3.2.5 Determination for Rice Color	24
3.2.6 Statistical Analysis	25
3.3 Results and Discussion	25
3.3.1 Pasting Property	25
3.3.2 Textural Property	29
3.3.3 Change in Rice Color	31
3.3.4 Relationship between Pasting Properties, Textural	
Properties and Color Parameters	33
3.4 Conclusions	37
CHAPTER 4 EFFECTS OF MILLED RICE GRAIN MOISTURE	
CONTENT DURING ACCELERATED AGING ON	
PHYSICO-CHEMICAL, PASTING AND	
TEXTURAL PROPERTIES, AND AROMA	
INTENSITY OF FRESHLY HARVESTED RICE	
CV. KDML 105	38
4.1 Introduction	38
4.2 Materials and Methods	39
4.2.1 Rice Samples and Preparations	39
4.2.2 Accelerated Aging Treatments	39
4.2.3 Determination for Pasting Property, Textural Property	• .
Copyright and Color Parameters lang Mai University	40
4.2.4 Determination for Solid Loss, Amylose Content and	
Kernel Elongation	40
4.2.5 Analysis of 2-Acetyl-1-pyrroline and n-Hexanal	41
4.2.6 Statistical Analysis	42
4.3 Results and Discussion	42

4.3.1 Pasting Property	42
4.3.2 Textural Property	45
4.3.3 Solid Loss, Kernel Elongation, Amylose Content and	
Color	47
4.3.4 Key Aromatic Compound, 2-Acetyl-1-pyrroline	51
4.3.5 Key Stale Odor Compound, <i>n</i> -Hexanal	53
4.4 Conclusions	55
CHAPTER 5 EFFECTS OF NATURAL AGING ON PHYSICO-	
CHEMICAL PROPERTIES AND AROMA	
INTENSITY OF RICE CV. KDML 105	56
5.1 Introduction	56
5.2 Materials and Methods	56
5.2.1 Sample Preparations and Analyses	56
5.2.2 Statistical Analysis	57
5.3 Results and Discussion	57
5.3.1 Pasting Property	57
5.3.2 Textural Property	58
5.3.3 Kernel Elongation during Storage	61
5.3.4 Rice Color Change during Storage	63
5.3.5 Loss of 2-Acetyl-1-pyrroline during Storage	66
5.3.6 Development of <i>n</i> -Hexanal during Storage	67
ลิงสิทธ์มหาวิทยาลัยเชียงให	68
CHAPTER 6 EFFECTS OF ACCELERATED AGING OF MILLED RICE ON CHANGES IN AROMA AND VOLATILE	ity
COMPONENTS OF FRESHLY HARVESTED RICE CV. KDML 105	6 9
6.1 Introduction	69

6.2	Materials and Methods		
	6.2.1 Rice Samples and Preparations	70	

6.2.2 Accelerated Aging Treatments	71
6.2.3 Analysis of 2-Acetyl-1-pyrroline and <i>n</i> -Hexanal	72
6.2.4 Analysis of Rice Headspace Volatile Components	72
6.2.5 Statistical Analysis	73
6.3 Results and Discussion	73
6.3.1 Aroma Quality on the Basis of 2-Acetyl-1-pyrroline and	
<i>n</i> -Hexanal Quantity	74
6.3.2 Aroma Quality on the Basis of Volatile Component	
Determined by GC-MS	78
6.4 Conclusions	86
and a summer and a second s	
CHAPTER 7 EFFECTS OF ACCELERATED AGING OF MILLED	
RICE ON CHANGES IN STARCH GRANULE	
MORPHOLOGY, THERMAL AND PROTEIN	
PROPERTIES AND STORAGE STABILITY OF	
FRESHLY HARVESTED RICE CV. KDML 105	87
7.1 Introduction	87
7.2 Materials and Methods	88
7.2.1 Rice Samples and Preparations	88
7.2.2 Investigation of Morphological and Structural Changes of	
Rice Starch Granule using Scanning Electron Microscopy	88
7.2.3 Investigation of Thermal Properties of KDML 105 Rice	
Flour 7	89
7.2.4 Investigation of Changes in Protein Properties	90
7.2.5 Investigation of Storage Stability	91
COPYN 7.2.6 Statistical Analysis Mang Mai Univers	SI 91
7.3 Results and Discussion	92
7.3.1 Investigation of Morphological and Structural Changes of	
Rice Starch Granule using Scanning Electron Microscopy	92
7.3.2 Investigation of Thermal Properties of KDML 105 Rice	
Flour Samples using Differential Scanning Calorimeter	94

7.3.3 Investigation of Changes in Protein Properties	98
7.3.4 Investigations of Storage Stability	105
7.4 Conclusions	113
CHAPTER 8 SUMMARY AND CONCLUSIONS	114
BIBLIOGRAPHY	117
APPENDICES	123
APPENDIX 1	124
APPENDIX 2	125
APPENDIX 3	126
APPENDIX 4	127
APPENDIX 5	128
APPENDIX 6	129
PUBLICATIONS	130
CURRICULUM VITAE	131
41 UNIVERSI	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table		Page
2.1	Major odor-active compounds, odor descriptions and odor	
	threshold values of Jasmine rice	12
3.1	RVA viscosity parameters of flour from freshly harvested	
	milled rice cv. KDML 105 as affected by accelerated aging	
	factors (temperatures and exposure durations).	26
3.2	Texture profile analysis attributes of cooked rice from freshly	
6	harvested rice cv. KDML 105 as affected by accelerated	
	aging factors (temperatures and exposure durations).	30
3.3	Color parameters (L^* , a^* , b^* , chroma, and hue angle) of	
	KDML 105 freshly harvested milled rice as affected by	
	accelerated aging factors (temperatures and exposure	
	durations).	32
3.4	Pearson's correlation coefficients between textural property,	
	pasting property, and color parameters of accelerated aging	
	rice.	34
4.1	RVA viscosity parameters of flour from freshly harvested	
	KDML 105 milled rice as affected by accelerated aging	
	factors (grain MC, temperatures and exposure durations).	44
4.2	Texture profile analysis attributes of cooked rice from freshly	
ລິມສີກ	harvested KDML 105 milled rice, as affected by accelerated	1411
auai	aging factors (grain MC, temperatures and exposure	ΓŀIJ
Convri	durations). by Chiang Mai Univer	46
4.3	Solid loss, kernel elongation and amylose content of freshly	Sity
	harvested rice cv. KDML 105 as affected by accelerated	e d
	aging factors (grain MC, temperatures and exposure	
	durations).	48

4.4	Color parameters (L^* , a^* , b^* , chroma and hue angle) of	
	KDML 105 freshly harvested milled rice as affected by	
	accelerated aging factors (grain MC, temperatures and	
	exposure durations).	49
5.1	RVA viscosity parameters of KDML 105 rice flour during	
	storage as paddy for 12 months at ambient temperature.	59
5.2	Texture profile analysis attributes of KDML 105 cooked rice	
	during storage as paddy for 12 months at ambient	
	temperature.	62
5.3	Color parameters (L^* , a^* , b^* , chroma and hue angle) of	
	KDML 105 milled rice during storage as paddy for 12	
-ST	months at ambient temperature.	64
6.1	Identification of volatile components of freshly harvested	
	KDML 105 milled rice and after accelerated aging treatment.	82
7.1	Thermal transition characteristics in terms of onset (T ₀),	
	peak (T _P), and conclusion (T _C) temperatures and	
	gelatinization enthalpy (ΔH) of flour samples (in Joules per	
	gram of 11% MC wb) of KDML 105 freshly harvested rice as	
	affected by accelerated aging treatments.	96
7.2	RVA viscosity parameters of freshly harvested and	
	accelerated aging milled rice flour operated with distilled	
	water and dithiothreitol (10mM DTT) solution.	102
ລິມສີາ	าธิ์แหกุจิทยุกลัยเชียุภไ	
ciocii		
Copyri	ight [©] by Chiang Mai Univers	sity
	rights reserve	e d

xiv

LIST OF FIGURES

Figure		Page
2.1	Summary of rice aging mechanism model modified from	
	Pomeranz (1992).	6
2.2	Chemical structure of 2-acetyl-1-pyrroline	10
2.3	Increase of disulfide bond by oxidation of cysteine to cystine.	16
2.4	Two-step reaction of dithiothreitol (DTT) to reduce cystine	
	to cysteine.	16
3.1	Temperature profiles of three extreme accelerated aging	
	treatments. Data recorded at the center of milled rice	
226	containers.	21
3.2	The RVA viscogram of flour from milled rice cv. KDML105	
	and determination of its parameters. PV; peak viscosity:	
C	TR; trough: FV; final viscosity:	
I	PA; pasting temperature (°C).	22
3.3	A typical texture profile analysis (TPA) curve obtained from	
	Texture Analyzer. TPA parameters recorded: HA, hardness	
	(g) (maximum positive force of first compression); AD,	
	adhesiveness (area of the negative force to pull probe from	
	sample); cohesiveness (CO) (ratio of area under second	
	compression (A2) to area under first compression (A1));	
8.18.	springiness (SP) (ratio of distance traveled by probe on	
adan	second compression (D2) to distance traveled by probe on	nIJ
Conver	first compression (D1); relates to sample recovery after first	
Copyrig	compression). Chiang Mai Univer	24
3.4	Change in RVA viscosity of flour from freshly harvested	e d
	milled rice cv. KDML 105 as affected by accelerated aging	
	factors (temperatures and exposure durations). Number	
	attached to viscogram indicate exposure time (min); FR:	
	fresh rice.	27

	3.5	Relationship of setback, hardness and yellowness with	
		exposure time of milled rice heating at different aging	
		temperatures.	36
	4.1	Temperature profiles of three extreme accelerated aging	
		treatments. Data recorded at the center of milled rice	
		containers.	41
	4.2	Color of freshly harvested KDML 105 milled rice (control)	
		and their corresponding rice of 13.4 and 16.6% MC after	
	6	accelerated aging at 120°C for 30 min.	50
	4.3	Quantity of 2-acetyl-1-pyrroline of KDML 105 freshly	
		harvested milled rice as affected by accelerated aging factors	
	202	(grain MC, temperatures and exposure durations).	52
	4.4	Area ratios of <i>n</i> -hexanal to DMP of KDML 105 freshly	
	000	harvested milled rice as affected by accelerated aging factors	
		(grain MC, temperatures and exposure durations).	54
	5.1	RVA viscograms of flour obtained from rice cv. KDML 105	
	, i i	after storage as paddy at ambient condition for 12 months.	
		Numbers indicate month of storage.	60
	5.2	Kernel elongation of cooked rice of KDML105 paddy stored	
		in ambient condition for a period of 12 months.	63
	5.3	Color of freshly harvested milled rice (control) and rice	
		stored as paddy for 6 and 12 months at ambient condition.	65
	5.4	Change in 2-acetyl-1-pyrroline concentration of KDML105	
a d	an	milled rice after storage as paddy in ambient condition for a	КIJ
	•	period of 12 months.	66
CO	5.5	Change in area ratios of n-hexanal/DMP of KDML105	SITY
ΑΙ		milled rice after storage as paddy in ambient condition for a	e d
		period of 12 months.	67
	6.1	Temperature profiles of the three accelerated aging	
		treatments. Data recorded at the center of milled rice	
		containers.	71

6.	2	Effect of accelerated aging treatments (temperature (°C) and	
		duration (min)) on the concentration of 2-acetyl-1-pyrroline	
		of freshly harvested KDML105 milled rice.	74
6.	3	Change in 2-acetyl-1-pyrroline concentration of KDML105	
		milled rice stored as paddy in ambient condition for a period	
		of 6 months.	75
6.	4	Effect of accelerated aging treatments (temperature (°C) and	
	/ {	duration (min)) on the area ratios of <i>n</i> -hexanal of freshly	
	9	harvested KDML105 milled rice.	76
6.	5	Change in area ratios of <i>n</i> -hexanal/DMP of KDML105	
		milled rice stored as paddy in ambient condition for a period	
	524	of 6 months.	77
6.	65	GC-MS chromatograms of KDML 105 freshly harvested	
		milled rice (FR) and after given accelerated aging (AA) at	
	\mathbf{C}	100°C for 100 min.	79
6.'	7	GC-MS chromatograms of KDML 105 freshly harvested	
		milled rice (FR) and after given accelerated aging (AA) at	
		110°C for 45 min.	80
6.	8	GC-MS chromatograms of KDML 105 freshly harvested	
		milled rice (FR) and after given accelerated aging (AA) at	
		120°C for 25 min.	81
7.	1	The DSC thermogram illustrating phrase transition; onset	
8.18		(T ₀), peak (T _P), and conclusion (T _C) temperatures of	
ada		gelatinization and the gelatinization enthalpy (ΔH) of	
Conv	ri a	KDML105 rice flour.	89
Copy.	2 5	Scanning electron microscopy of freshly harvested	ιγ
		KDML105 rice starch granule after accelerated aging with	C
		different conditions as indicated under the micrographs.	93
7.	3	DSC thermogram of ungelatinized flour sample and the	
		rescanning thermogram of the same flour.	95

7.4	DSC thermograms of flour from freshly harvested and after	
	accelerated aging with different conditions of rice cv.	
	KDML105. Their aging conditions are indicated above the	
	thermograms.	95
7.5	DSC thermograms of KDML105 flour sample showing single	
	endothermic peak. Their aging conditions are indicated	
	above the thermograms.	98
7.6	RVA viscograms of flour from freshly harvested rice cv.	
4	KDML 105 (FR) and of flour from the rice after accelerated	
	aging by exposure to temperature of 100°C for 100 min	
	(AAR).	99
7.7	RVA viscograms of flour from freshly harvested rice cv.	
205	KDML105 (FR) and the flour after accelerated aging with	
	temperature of 100°C for 100 min (AAR) when operated	
C	with distilled water and with solution containing	
T	dithiothreitol (10 mM DTT).	100
7.8	RVA viscograms of flour from 8-month naturally-aged	
	KDML 105 rice sample performing with distilled water (A)	
	and (B) with solution containing dithiothreitol (10 mM	
	DTT).	103
7.9	RVA viscograms of flour from freshly harvested rice cv.	
	KDML 105 (A) and of flour from the rice after accelerated	_
6 11 8 10	aging with temperature of 100°C for 100 min (B) when	
adall	operated with distilled water and with solution containing	nIJ
Convrig	proteinase enzyme (40 U) and solution containing mixture of	
Copyrig	proteinase enzyme (40 U) and dithiothreitol (10 mM DTT).	104
	rights reserve	e d

7.10	Change in 2-acetyl-1-pyrroline concentration of KDML105	
	milled rice after given different accelerated aging treatments	
	and stored in different packaging types in ambient condition	
	for a period of 6 months. The initial values (at month 0) were	
	5.04, 3.33, 3.78, and 3.94 ppm in Con, H100, H45, and H25,	
	respectively. Con; fresh rice: H100; heat 100°C–100 min:	
	H45; heat 110°C-45 min: H25; heat 120°C-25 min: PE;	
	polyethylene bag: NY; nylon laminated bag: F; aluminum	
4	foil laminated bag.	06
7.11	Change in area ratios of <i>n</i> -hexanal/DMP of KDML105	
	milled rice after given different accelerated aging treatments	
224	and stored in different packaging types in ambient condition	
735	for a period of 6 months. The initial values (at month 0)	
	were 0.60, 0.47, 0.41, and 0.37 in Con, H100, H45, and H25,	
Q	respectively. Con; fresh rice: H100; heat 100°C–100 min:	
T	H45; heat 110°C-45 min: H25; heat 120°C-25 min: PE;	
	polyethylene bag: NY; nylon laminated bag: F; aluminum	
	foil laminated bag.	07
7.12	RVA pasting curves of KDML105 rice flour just after given	
	different accelerated aging treatments.	08
7.13	Change in RVA pasting curves of flour from KDML105	
	milled rice after given different accelerated aging treatments	
6 11 8 10	and stored in different packaging types in ambient condition	
aoan	for a period of 6 months. PE; polyethylene bag: NY; nylon	
Copyrig	laminated bag: F; aluminum foil laminated bag. 1	.09
	rights reserve	0

7.14	Change in hardness of cooked rice from KDML105 milled	
	rice after given different accelerated aging treatments and	
	stored in different packaging types in ambient condition for	
	a period of 6 months. Con; fresh rice: H100; heat 100°C–	
	100 min: H45; heat 110°C–45 min: H25; heat 120°C–25	
	min: PE; polyethylene bag: NY; nylon laminated bag: F;	
	aluminum foil laminated bag.	110
7.15	Change in adhesiveness of cooked rice from KDML105	
/ 20	milled rice after given different accelerated aging treatments	

milled rice after given different accelerated aging treatments and stored in different packaging types in ambient condition for a period of 6 months. Con; fresh rice: H100; heat 100°C–100 min: H45; heat 110°C–45 min: H25; heat 120°C–25 min: PE; polyethylene bag: NY; nylon laminated bag: F; aluminum foil laminated bag. Change in yellowness (*b** value) of KDML105 milled rice after given different accelerated aging treatments and stored

111

112

Change in yellowness (b* value) of KDML105 milled rice after given different accelerated aging treatments and stored in different packaging types in ambient condition for a period of 6 months. Con; fresh rice: H100; heat 100°C–100 min: H45; heat 110°C–45 min: H25; heat 120°C–25 min: PE; polyethylene bag: NY; nylon laminated bag: F; aluminum foil laminated bag.

7.16

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University AII rights reserved

ABBREVIATIONS

AA	Accelerated Aging
cv. KDML 105	Cultivar Khao Dawk Mali 105
DMP	2,6-Dimethylpyridine
DSC	Differential Scanning Calorimeter
DTT	Dithiothreitol
GC-FID	Gas Chromatograph-Flame Ionization Detector
GC-MS	Gas Chromatography–Mass Spectrometry
RVA	Rapid Visco Analyser
SEM	Scanning Electron Microscope
SPME	Solid-Phase Micro Extraction
Tc	Conclusion Temperature of Gelatinization
To	Onset Temperature of Gelatinization
TP	Peak Temperature of Gelatinization
ТРА	Texture Profile Analysis
ΔН	Gelatinization Enthalpy

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved