TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT (THAI)</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT (ENGLISH)</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Principles, rationale and hypothesis 1
1.2 Research objectives 3
1.3 Research scope 3
1.4 Usefulness of the research 3
1.5 Research locations 3

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 4
2.2 Chemical composition, nutritive and medicinal value 5
2.3 Anatomy of citrus fruit 6
2.4 Postharvest technology 9
 2.4.1 Harvest maturity indices 9
 2.4.2 Harvesting methods 10
 2.4.3 Packinghouse procedures 10
 2.4.3.1 Delivery and cleaning 10
 2.4.3.2 Washing, waxing, antifungal treatment and sorting 10
 2.4.3.3 Sizing and packing 10
2.5 Postharvest physiology 11
2.6 Refrigerated storage of tangerine fruit 13
2.7 Green mold rot of tangerine
 2.7.1 Disease cycle and epidemiology 15
 2.7.2 Symptoms 16
 2.7.3 Causal agent 16

2.8 Chilling injury 19
 2.8.1 Chilling temperature of tangerine fruit 19
 2.8.2 Symptoms of chilling injury 20
 2.8.3 Mechanism of chilling injury 21
 2.8.3.1 Lipid composition and chilling injury 22
 2.8.3.2 Membrane permeability and leakage 23

2.9 Heat treatment 24

2.10 Hot water treatment (HWT) 26

2.11 Heat treatment and host pathogen interactions 27
 2.11.1 Pathogen response to heat treatment 27
 2.11.2 Fruit responses affecting pathogen defence 29

2.12 Heat treatment and chilling injury 33

CHAPTER 3 MATERIALS AND METHODS 36

3.1 Effect of hot water treatment (HWT) on green mold infection 36
 in tangerine fruit cv. Sai Num Pung
 3.1.1 Effect of HWT on spore germination of
 Penicillium digitatum in vitro 36
 3.1.1.1 Preparation of spore suspension 36
 3.1.1.2 Hot water treatments 36
 3.1.2 Effect of HWT on infection of Penicillium digitatum
 in tangerine fruit cv. Sai Num Pung 37
 3.1.2.1 Fruit preparation 37
 3.1.2.2 Postharvest HWT and storage conditions 37
 3.1.2.3 Inoculum preparation 37
 3.1.2.4 Hot water treatments 38
3.2 Effect of HWT on anatomy and chemical component changes in tangerine fruit during infection of *Penicillium digitatum* and chilling injury under low-temperature storage

3.2.1 Effect of HWT on infection of *Penicillium digitatum* in tangerine fruit under low-temperature storage

3.2.1.1 Fruit preparation
3.2.1.2 Postharvest HWT and storage conditions
3.2.1.3 Inoculum preparation
3.2.1.4 Hot water treatments

3.2.2 Effect of HWT on chemical component changes and chilling injury in tangerine fruit under low-temperature storage

3.2.2.1 Fruit preparation
3.2.2.2 Chilling injury evaluation
3.2.2.3 Determination of electrolyte leakage
3.2.2.4 Determination of soluble solid content (SSC)

3.2.3 Effect of HWT on anatomy changes of tangerine fruit peel during infection of *Penicillium digitatum* under low-temperature storage

3.2.3.1 Preparation of tangerine fruit peel for SEM

3.3 Effect of HWT on biochemical changes in tangerine fruit peel during infection of *Penicillium digitatum* and chilling injury under low-temperature storage

3.3.1 Effect of HWT on activities of the defensive enzymes in tangerine fruit peel during infection of *Penicillium digitatum* under low-temperature storage

3.3.1.1 Extraction of the defensive enzymes
3.3.1.2 Enzyme assay and protein determination

3.3.2 Effect of HWT on protein patterns in tangerine fruit peel during infection of *Penicillium digitatum* under low-temperature storage

SDS-PAGE (SDS-Polyacrylamide gel electrophoresis) of protein

3.3.2.1 Preparation of separating gel
3.3.2.2 Preparation of stacking gel
3.3.2.3 Running the gel
3.3.2.4 Sample preparation
3.3.2.5 Staining of gels with Coomassie Brilliant Blue (CBB) R-250
3.3.2.6 Rf Value of protein and marker dye

3.3.3 Effect of HWT on lipid peroxidation in tangerine fruit peel under low-temperature storage
3.3.3.1 Determination of malondialdehyde (MDA) concentration
3.3.3.2 Extraction of lipoxygenase
3.3.3.3 Enzyme assay and protein determination

3.4 Statistical data analysis

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Effect of hot water treatment (HWT) on green mold infection in tangerine fruit cv. Sai Num Pung
4.1.1 Effect of HWT on spore germination of *Penicillium digitatum* in vitro
4.1.2 Effect of HWT on infection of *Penicillium digitatum* in tangerine fruit cv. Sai Num Pung

4.2 Effect of HWT on anatomy and biochemical changes in tangerine fruit during infection of *Penicillium digitatum* under low-temperature storage
4.2.1 Effect of HWT on infection of *Penicillium digitatum* in tangerine fruit under low-temperature storage
4.2.2 Effect of HWT on anatomy changes of tangerine fruit peel during infection of *Penicillium digitatum* under low-temperature storage
4.2.3 Effect of HWT on activities of the defensive enzymes and protein patterns in tangerine fruit peel during infection of *Penicillium digitatum* under low-temperature storage

4.3 Effect of HWT on chemical component changes and chilling injury in tangerine fruit under low-temperature storage
CHAPTER 5 CONCLUSIONS 123

5.1 Effect of hot water treatment (HWT) on green mold infection in tangerine fruit cv. Sai Num Pung 123

5.2 Effect of HWT on anatomy and biochemical changes in tangerine fruit during infection of Penicillium digitatum under low-temperature storage 123

5.3 Effect of HWT on chemical component changes and chilling injury in tangerine fruit under low-temperature storage 124

BIBLIOGRAPHY 125

PUBLICATIONS 141

CURRICULUM VITAE 142
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The chemical compositions and nutritional values of fresh tangerine fruit per 100 gram of the edible part</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Storage temperature, relative humidity and storage life of fresh mandarin and tangerine fruit</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Approximate lowest safe temperatures, freezing points and characteristic low-temperature injury in citrus fruit</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>The thermodynamic and operational characteristics of heat treatments</td>
<td>25</td>
</tr>
<tr>
<td>2.5</td>
<td>Hot water treatments for citrus fruit, optimal temperature and aim of heat treatments</td>
<td>28</td>
</tr>
<tr>
<td>4.1</td>
<td>Effect of hot water treatments (HWT) on green mold rot disease index of artificially-inoculated tangerine fruit during 5 days incubation at 24±2°C and 90±5% RH</td>
<td>65</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of hot water treatments (HWT) on green mold rot disease severity (lesion diameter) of artificially-inoculated tangerine fruit during 5 days incubation at 24±2°C and 90±5% RH</td>
<td>66</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of hot water treatments (HWT) on sporulation of green mold rot disease of artificially-inoculated tangerine fruit during 5 days incubation at 24±2°C and 90±5% RH</td>
<td>67</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of hot water treatments (HWT) on green mold rot disease index of artificially-inoculated tangerine fruit during 35 days storage at 4±2°C and 90±5% RH</td>
<td>83</td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of hot water treatments (HWT) on green mold rot disease severity (lesion diameter) of artificially-inoculated tangerine fruit during 35 days storage at 4±2°C and 90±5% RH</td>
<td>84</td>
</tr>
</tbody>
</table>
4.6 Effect of hot water treatments (HWT) on chitinase activity in flavedo tissues of artificially-inoculated tangerine fruit during 30 days storage at 4±2°C and 90±5% RH

4.7 Effect of hot water treatments (HWT) on β-1,3-glucanase activity in flavedo tissues of artificially-inoculated tangerine fruit during 30 days storage at 4±2°C and 90±5% RH

4.8 Effect of hot water treatments (HWT) on peroxidase activity in flavedo tissues of artificially-inoculated tangerine fruit during 30 days storage at 4±2°C and 90±5% RH

4.9 Effect of hot water treatments (HWT) at various temperature and time on chilling injury index of tangerine fruit storage at 2±2°C and 90±5% RH for 20, 25 and 30 days

4.10 Effect of hot water treatments (HWT) on electrolyte leakage (EL) in flavedo tissues of tangerine fruit during 30 days storage at 2±2°C and 90±5% RH

4.11 Effect of hot water treatments (HWT) on malondialdehyde (MDA) concentration in flavedo tissues of tangerine fruit during 30 days storage at 2±2°C and 90±5% RH

4.12 Effect of hot water treatments (HWT) on soluble solids content (SSC) of tangerine fruit during 30 days storage at 2±2°C and 90±5% RH
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Cross-section of a citrus fruit</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Three stages of green mold rot on sweet oranges</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>Penicillium digitatum colonies on CYA (A) and MEA (B), 7 days at 25°C</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Penicillium digitatum (A) penicilli x750 (B) conidia x1875</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Postharvest chilling injury of citrus fruit</td>
<td>22</td>
</tr>
<tr>
<td>3.1</td>
<td>Scores of the fruit surface infected with Penicillium digitatum</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>Sporulation index of the fruit surface covered with green mold spores</td>
<td>40</td>
</tr>
<tr>
<td>4.1</td>
<td>Effect of hot water treatments on spore germination of Penicillium digitatum incubated at 25±2°C in darkness for 24 and 48 hours at 45±2, 50±2 and 55±2°C for 0.5, 1, 2 and 3 minutes</td>
<td>52</td>
</tr>
<tr>
<td>4.2</td>
<td>Hot water treatments on spore germination of Penicillium digitatum incubated at 25±2°C in darkness for 24 hours, at 45±2°C for 0.5, 1, 2 and 3 minutes (A-D) compared with control (E) showed no effect (100% germination)</td>
<td>53</td>
</tr>
<tr>
<td>4.3</td>
<td>Hot water treatments on spore germination of Penicillium digitatum incubated at 25±2°C in darkness for 48 hours, at 45±2°C for 0.5, 1, 2 and 3 minutes (A-D) compared with control (E) showed no effect (100% germination)</td>
<td>54</td>
</tr>
<tr>
<td>4.4</td>
<td>Hot water treatments on spore germination of Penicillium digitatum incubated at 25±2°C in darkness for 24 hours, at 50±2°C for 0.5, 1, 2 and 3 minutes</td>
<td>55</td>
</tr>
<tr>
<td>4.5</td>
<td>Hot water treatments on spore germination of Penicillium digitatum incubated at 25±2°C in darkness for 48 hours, at 50±2°C</td>
<td></td>
</tr>
</tbody>
</table>
for 0.5, 1, 2 and 3 minutes (A-D) compared with control (E) showed no effect (100% germination)

4.6 Hot water treatments on spore germination of *Penicillium digitatum* incubated at 25±2°C in darkness for 24 hours, at 55±2°C for 0.5, 1, 2 and 3 minutes

4.7 Hot water treatments on spore germination of *Penicillium digitatum* incubated at 25±2°C in darkness for 48 hours, at 55±2°C for 0.5, 1, 2 and 3 minutes

4.8 Disease index of green mold rot of artificially-inoculated tangerine fruit treated with hot water (HWT) before/after inoculation at 45±2, 50±2 and 55±2°C for 0.5, 1, 2 and 3 minutes during 5 days incubation at 24±2°C and 90±5% RH

4.9 Disease severity of green mold rot of artificially-inoculated tangerine fruit treated with hot water (HWT) before/after inoculation at 45±2, 50±2 and 55±2°C for 0.5, 1, 2 and 3 minutes during 5 days incubation at 24±2°C and 90±5% RH

4.10 Sporulation index of green mold rot of artificially-inoculated tangerine fruit treated with hot water (HWT) before/after inoculation at 45±2, 50±2 and 55±2°C for 0.5, 1, 2 and 3 minutes during 5 days incubation at 24±2°C and 90±5% RH

4.11A Tangerine fruit after inoculated 0 day with *Penicillium digitatum* and treated with hot water (HWT) at 45±2°C for 0.5, 1, 2 and 3 minutes

4.11B Tangerine fruit after inoculated 0 day with *Penicillium digitatum* and treated with hot water (HWT) at 50±2°C for 0.5, 1, 2 and 3 minutes

4.11C Tangerine fruit after inoculated 0 day with *Penicillium digitatum* and treated with hot water (HWT) at 55±2°C for 0.5, 1, 2 and 3 minutes

4.11D Two sets of control uninoculated and untreated fruit 0 day

4.12A Tangerine fruit 3 days incubation at 24±2°C and 90±5% RH after
inoculated with *Penicillium digitatum* and treated with hot water (HWT) at 45±2°C for 0.5, 1, 2 and 3 minutes; arrows indicate where the symptoms begin to show

4.12B Tangerine fruit 3 days incubation at 24±2°C and 90±5% RH after inoculated with *Penicillium digitatum* and treated with hot water (HWT) at 50±2°C for 0.5, 1, 2 and 3 minutes; arrows indicate where the symptoms begin to show

4.12C Tangerine fruit 3 days incubation at 24±2°C and 90±5% RH after inoculated with *Penicillium digitatum* and treated with hot water (HWT) at 55±2°C for 0.5, 1, 2 and 3 minutes; arrows indicate where the symptoms begin to show

4.12D Two sets of control uninoculated fruit showed no symptom while inoculated and untreated fruit showed symptoms (arrow) 3 days incubation at 24±2°C and 90±5% RH

4.13A Tangerine fruit 5 days incubation at 24±2°C and 90±5% RH after inoculated with *Penicillium digitatum* and treated with hot water (HWT) at 45±2°C for 0.5, 1, 2 and 3 minutes; all treatments showed symptoms

4.13B Tangerine fruit 5 days incubation at 24±2°C and 90±5% RH after inoculated with *Penicillium digitatum* and treated with hot water (HWT) at 50±2°C for 0.5, 1, 2 and 3 minutes; inoculation before HWT at 50±2°C for 3 minutes showed best result

4.13C Tangerine fruit 5 days incubation at 24±2°C and 90±5% RH after inoculated with *Penicillium digitatum* and treated with hot water (HWT) at 55±2°C for 0.5, 1, 2 and 3 minutes; inoculation before HWT at 55±2°C for 2 and 3 minutes showed best result

4.13D Two sets of control uninoculated fruit showed no symptom while inoculated and untreated fruit showed serious symptoms 5 days
incubation at 24±2°C and 90±5% RH

4.14 Effect of hot water treatments (HWT) on green mold rot disease index and severity (lesion diameter) of artificially-inoculated tangerine fruit during 35 days storage at 4±2°C and 90±5% RH

4.15 Effect of hot water treatments (HWT) at various temperature and time on green mold rot disease development of artificially-inoculated tangerine fruit 10 days storage at 4±2°C and 90±5% RH

4.16 Effect of hot water treatments (HWT) at various temperature and time on green mold rot disease development (percentage of disease index: DI) of artificially-inoculated tangerine fruit 15 days storage at 4±2°C and 90±5% RH

4.17 Effect of hot water treatments (HWT) at various temperature and time on green mold rot disease development (percentage of disease index: DI) of artificially-inoculated tangerine fruit 20 days storage at 4±2°C and 90±5% RH

4.18 Effect of hot water treatments (HWT) at various temperature and time on green mold rot disease development (percentage of disease index: DI) of artificially-inoculated tangerine fruit 25 days storage at 4±2°C and 90±5% RH

4.19 Effect of hot water treatments (HWT) at various temperature and time on green mold rot disease development (percentage of disease index: DI) of artificially-inoculated tangerine fruit 30 days storage at 4±2°C and 90±5% RH

4.20 SEM showed effect of hot water treatments (HWT) on ‘Sai Num Pung’ tangerine fruit surfaces after treated with HWT at 50±2°C for 3 minutes (A) HWT at 55±2°C for 2 minutes (B) and 3 minutes (C) (0 day) the peel was smooth homogeneous but control (D) was rough

4.21 SEM showed effect of hot water treatments (HWT) (Day 0) on ‘Sai Num Pung’ tangerine fruit surfaces after treated with HWT at
55±2°C for 3 minutes having narrow stoma (C) while HWT at 50±2°C for 3 minutes and HWT at 55±2°C for 2 minutes stomata were plugged with melted cuticle (A, B) compared with control stoma was wide opened and unplugged (D)

4.22 SEM showed effect of hot water treatments (HWT) on crack of the peel light after treated with HWT at 50±2°C for 3 minutes (A) HWT at 55±2°C for 2 minutes (B) and 3 minutes (C) (0 day) showed the cracks were shallow filled with melted cuticle whereas control (D) the crack was wider with a germinating spore (arrow)

4.23 SEM showed effect of hot water treatments (0 day) on Penicillium digitatum spore (Sp) number exist on the peel after treatment at various temperature and time, all treatments (A, B, C) showed small number of spore compared to high number in control (D)

4.24 SEM showed higher magnification of spore (Sp) on the fruit peel affected by hot water treatments (0 day) at various temperature and time, all treatments (A, B, C) showed denature of spore (ASp = abnormal spore) while the spore in control (D) was normal

4.25 SEM showed numerous spores (Sp) and mycelium (H = hyphae) of Penicillium digitatum on the peel of tangerine fruit (A, B, C) 15 days after inoculation stored at 4±2°C and 90±5% RH without hot water treatment (control)

4.26 SEM showed few hyphae (H), small number and denature of spore (Sp) of Penicillium digitatum on the peel of tangerine fruit affected by hot water treatment at 50±2°C for 3 minutes (A, B, C) 15 days after inoculation stored at 4±2°C and 90±5% RH; ASp = abnormal spore

4.27 SEM showed small number and denature of hyphae (H) of Penicillium digitatum on the peel of tangerine fruit affected by hot
water treatment at 55±2°C for 2 minutes (A, B, C) 15 days after inoculation stored at 4±2°C and 90±5% RH; AH = abnormal hyphae

4.28 SEM showed few hyphae (H) and denature of spore (Sp) of *Penicillium digitatum* on the peel of tangerine fruit affected by hot water treatment at 55±2°C for 3 minutes (A, B, C) 15 days after inoculation stored at 4±2°C and 90±5% RH; ASp = abnormal spore

4.29 Effect of hot water treatments (HWT) on changes of chitinase, β-1,3-glucanase (beta-1,3-Glucanase) and peroxidase activities in flavedo tissue of tangerine fruit inoculated with *Penicillium digitatum* during 30 days storage at 4±2°C and 90±5% RH

4.30 Protein bands from tangerine fruit peel tissue in response to hot water treatments (HWT) 5 days storage at 4±2°C and 90±5% RH by 10% SDS-PAGE

4.31 Effect of hot water treatments (HWT) at various temperature and time on chilling injury index of tangerine fruit storage at 2±2°C and 90±5% RH for 20, 25 and 30 days

4.32 Effect of hot water treatments (HWT) at various temperature and time on chilling injury of tangerine fruit 30 days storage at 2±2°C and 90±5% RH, no chilling injury were found

4.33 Effect of hot water treatments (HWT) on electrolyte leakage, malondialdehyde (MDA) and soluble solids content of tangerine fruit during 30 days storage at 0±2°C and 90±5% RH