ABSTRACT

Promoting the use of biomass energy in the community is an important strategy in Thailand. The usage of biomass as a fuel to produce electricity is an alternative way to promote the country energy strategy. Communities of Thailand in general, are often a source of biomass in different ways but the disadvantages of biomass are to collect biomass distributed in local areas. Although the potential source of biomass and distribution in the local area are set, there are a few practices in the community-scaled and their impact on the environment is unrevealed. The research aims to develop a feasibility model for decentralized and community-based biomass power plant to produce electricity in the scale of a very small power producer focusing on the logistic systems factors, technology reflected to the unit and externality costs. Moreover, the environment...
impact directly affecting members of the community will be studied as well. Fast growth wood or biomass residues available in the local area will be in focus as renewable sources. Feasibility model is then developed and it is simple enough to include either Rankine steam turbine system or gasification system as a conversion technology to be used for the power plant. The environmental impact assessment of the electrification is also included and accomplished by the commercial software; “Sigma Pro” along which the externality cost is also shown in accordance with the environmental damage influenced by the system. There are two primary scenarios in this work.

Economic feasibility of very small power plant is achieved fueled by fast-growth wood plantation surrounding the facility. The 50-kW Rankine steam system and 100-kW gasification technology are in comparison based on the previous study carried out at Chiang Mai University and Suranaree University of Technology. It is proposed that woody biomass is in three-year rotation and there are three batches of plantation for the continuity of plant operation. As the efficiency of 50-kWe steam system is as low as 7.2%, woodchips at 4.78 kg/kWh is required from 359 rai (57 ha) of plantation. At the efficiency of 17.72%, the 100-kWe gasification system consumes less woodchips at 2.27 kg/kWh on required area of 340 rai (55 ha). Unit cost of electricity generated from steam system and gasification system is reported as high as 5.78 baht/kWh and 4.17 baht/kWh, respectively which is not sufficient for the project to be feasible. Environmental impact of the both power plants is less than of the national grid. The externality cost of both system agrees well with previous investigation at 0.57 baht/kWh for steam system and 0.436 baht/kWh of gasification system. To convert the power plant to be more profitable without external investment, waste heat from the systems, especially from the steam system, can be recovered and utilized to generate income. Two drying units should be installed and used for the agriculture products as the local services earning more benefit as the combined heat and power facility. If 27% waste heat is utilized, the steam system will start to generate income. It is also proposed that carbon as co-product from the gasification system is to be bound and compressed as charcoal briquette since it can generate more revenue.
As plantation is not quite an option for the resource of community-based power generation, wooden residue is considered. For small community, the sources may be scattered; therefore, the geographic information system (GIS) is integrated to evaluate the suitable location of the power plant to minimize the energy consumption due to logistic. Based on fast shortest path and multi-seed point theory, transport network analysis is achieved using ArcGIS. Supported with database of woody fuel and transport routes, wood-industry community in Chiang Mai – Lamphun area where there are 54 handicraft factories is studied as sample case. It is potential area for establish 400 kWe gasification power plant. Optimized location for the power plant is suggested where the average fuel consumption cost is 39.25 Bath/ton resulting in a unit cost of electricity at 1.37 baht/kWh as the corresponding IRR is 31.11% with a payback period of 3.21 year. This is based on the assumption that woody residues are a contribution from the community; however, if fuel has to be purchased, it is found out that the price should not be more 1,105 baht/ton. While the externality cost is less than 0.19 baht/kWh which is less than what is released from the national grid.
ชื่อเรื่องวิทยานิพนธ์ การวิเคราะห์ความเป็นไปได้ของการผลิตไฟฟ้าระดับชุมชนจากชีวมวลภายใต้เงื่อนไขของโลจิสติกส์ เทคโนโลยี และผลกระทบต่อสิ่งแวดล้อม

ผู้เขียน นางสาวจีนตา เปี่ยมดี

ปริญญา วิศวกรรมศาสตรดุษฎีบัณฑิต (วิศวกรรมพลังงาน)

คณะกรรมการที่ปรึกษาวิทยานิพนธ์ ศาสตราจารย์ ดร.ณัฐ วรยศ อาจารย์ที่ปรึกษาหลัก ศาสตราจารย์ ผศ.ดร.ทนงเกียรติ เกียรติศิริโรจน์ อาจารย์ที่ปรึกษาร่วม ศาสตราจารย์ ดร.ณัฐนี วรยศ อาจารย์ที่ปรึกษาร่วม

บทคัดย่อ การส่งเสริมการใช้พลังงานชีวมวลในระดับชุมชนถือว่าเป็นยุทธศาสตร์พลังงานที่สำคัญของประเทศไทย การใช้ชีวมวลเป็นเชื้อเพลิงในการผลิตพลังงานไฟฟ้าถือว่าเป็นทางเลือกที่น่าสนใจสำหรับยุทธศาสตร์พลังงานของประเทศ โดยทั่วไปชุมชนของประเทศไทยจะมีแหล่งกำเนิดชีวมวลในรูปแบบต่างๆ ข้อด้อยของชีวมวลคือการรวบรวมชีวมวลที่กระจายอยู่ในท้องถิ่นอย่างไรก็ตามหากมีแหล่งชีวมวลที่มีศักยภาพและกระจายในบริเวณท้องถิ่นแล้วอย่างจริงจังจะเป็นต้นแบบในการนำชีวมวลที่มีศักยภาพเหล่านั้นมาใช้งานกันอย่างจริงจัง รวมถึงการพัฒนาระบบการผลิตพลังงานจากชีวมวลที่มีศักยภาพและกระจายในบริเวณท้องถิ่นจะเป็นการสนับสนุนการพัฒนาการผลิตพลังงานชีวมวลในระดับชุมชน ผลักดันการผลิตพลังงานจากชีวมวลเป็นแหล่งกำเนิดพลังงานทดแทนที่มีศักยภาพ รวมถึงจุดมุ่งหมายของงานวิจัยคือการพัฒนาแบบจำลองของศูนย์ผลิตพลังงานชีวมวลที่มีศักยภาพเพื่อให้เป็นต้นแบบในการนำชีวมวลที่มีศักยภาพเหล่านั้นมาใช้งานกันอย่างจริงจัง รวมถึงการพัฒนาระบบการผลิตพลังงานจากชีวมวลที่มีศักยภาพและกระจายในบริเวณท้องถิ่น
ศูนย์พลังงานชีวมวลถูกพัฒนาเพื่อผลิตพลังงานไฟฟ้าที่ชุมชนเป็นเจ้าของโรงไฟฟ้าโดยใช้ไม้โดยที่ได้จากการปลูกหรือเศษไม้ต้องถูกเรียกโดยไม่เกิดค่าจ้างงานของไม้เชื้อเพลิงดังกล่าวเนื่องจากสมาชิกทุกคนจะได้รับผลประโยชน์จากโรงไฟฟ้าร่วมกัน แบบจำลองสามารถรองรับเทคโนโลยีการผลิตไฟฟ้าด้วยระบบกังหันกำลังไฟฟ้าและระบบต้นกำลังแก๊ส การประเมินผลกระทบทางด้านสิ่งแวดล้อมของชุมชนที่ใช้โปรแกรมเรียบร้อย SimaPro จะจะถูกนำมาประเมินอยู่การทําทางด้านสิ่งแวดล้อม

แบบจำลองของศูนย์พลังงานถูกประยุกต์ใช้เพื่อเปรียบเทียบเทคโนโลยีระบบกังหันกำลังไฟฟ้าและระบบต้นกำลังที่มีมาสภาวะรับชุมชนขนาดเล็กที่ต้องการกำลังไฟฟ้าไม่เกิน 100kW โดยใช้ไม้โดยที่ได้จากการปลูกหรือเศษไม้ในท้องถิ่นเป็นเชื้อเพลิงโดยไม่คิดค่าจ่ายของไม้เชื้อเพลิงดังกล่าวเนื่องจากทุกคนจะได้รับผลประโยชน์จากโรงไฟฟ้าร่วมกันแบบจำลองสามารถรองรับเทคโนโลยีการผลิตไฟฟ้าด้วยระบบกังหันกำลังไฟฟ้าและระบบต้นกำลังแก๊ส การประเมินผลกระทบทางด้านสิ่งแวดล้อมของชุมชนที่ใช้โปรแกรมเรียบร้อย SimaPro จะจะถูกนำมาประเมินอยู่การทําทางด้านสิ่งแวดล้อม

การวิเคราะห์ต้นทุนตลาดเครื่องจักรของกำลังระบบกังหันไฟฟ้ามีค่าต่ำที่สุดกว่าต้นทุนไฟฟ้าระบบกังหันก๊าสซึ่งน่าจะทำให้พื้นที่การปลูกไม้ร่วมกันที่ได้มาต้องการไฟฟ้าใช้เป็นระบบก๊าสซึ่งมีประสิทธิภาพของระบบร้อยละ 72 ต้องการพื้นที่ในการปลูกไม้ร่วมกันที่มีการประเมิน 12.5 เท่าสูงสุดต่อกิโลกรัม ผลการศึกษาถูกพบว่าโรงไฟฟ้าที่ได้ต้นทุนต่ำกว่าโดยใช้ไม้โดยที่ได้จากการปลูกหรือเศษไม้ในท้องถิ่นต้องการไฟฟ้าร่วมกันแบบจำลองสามารถรองรับเทคโนโลยีการผลิตไฟฟ้าด้วยระบบกังหันกำลังไฟฟ้าและระบบต้นกำลังแก๊ส การประเมินผลกระทบทางด้านสิ่งแวดล้อมของชุมชนที่ใช้โปรแกรมเรียบร้อย SimaPro จะจะถูกนำมาประเมินอยู่การทําทางด้านสิ่งแวดล้อม

การวิเคราะห์ต้นทุนตลาดเครื่องจักรของกำลังระบบกังหันไฟฟ้ามีค่าต่ำที่สุดกว่าต้นทุนไฟฟ้าระบบกังหันก๊าสซึ่งน่าจะทำให้พื้นที่การปลูกไม้ร่วมกันที่ได้มาต้องการไฟฟ้าใช้เป็นระบบก๊าสซึ่งมีประสิทธิภาพของระบบร้อยละ 17.72 ต้องการพื้นที่ในการปลูกไม้ร่วมกันแบบจำลองสามารถรองรับเทคโนโลยีการผลิตไฟฟ้าด้วยระบบกังหันกำลังไฟฟ้าและระบบต้นกำลังแก๊ส การประเมินผลกระทบทางด้านสิ่งแวดล้อมของชุมชนที่ใช้โปรแกรมเรียบร้อย SimaPro จะจะถูกนำมาประเมินอยู่การทําทางด้านสิ่งแวดล้อม

การวิเคราะห์ต้นทุนตลาดเครื่องจักรของกำลังระบบกังหันไฟฟ้ามีค่าต่ำที่สุดกว่าต้นทุนไฟฟ้าระบบกังหันก๊าสซึ่งน่าจะทำให้พื้นที่การปลูกไม้ร่วมกันที่ได้มาต้องการไฟฟ้าใช้เป็นระบบก๊าสซึ่งมีประสิทธิภาพของระบบร้อยละ 17.72 ต้องการพื้นที่ในการปลูกไม้ร่วมกันแบบจำลองสามารถรองรับเทคโนโลยีการผลิตไฟฟ้าด้วยระบบกังหันกำลังไฟฟ้าและระบบต้นกำลังแก๊ส การประเมินผลกระทบทางด้านสิ่งแวดล้อมของชุมชนที่ใช้โปรแกรมเรียบร้อย SimaPro จะจะถูกนำมาประเมินอยู่การทําทางด้านสิ่งแวดล้อม
ของโรงไฟฟ้าทั้งสองแหล่งสอดคล้องกันด้านทุนสิ่งแวดล้อมโดยโรงไฟฟ้าแก๊สซิฟิเคชั่นมีค่าสิ่งแวดล้อมที่ 0.57 บาท/กิโลวัตต์-ชั่วโมง ซึ่งมากกว่าด้านทุนสิ่งแวดล้อมของโรงไฟฟ้ากังหันไอน้ำที่ 0.436 บาท/กิโลวัตต์-ชั่วโมง

แบบจำลองของศูนย์พลังงานถูกประยุกต์ใช้กับระบบสารสนเทศทางภูมิศาสตร์เพื่อประเมินที่พิกัดตำแหน่งที่เหมาะสมของโรงไฟฟ้าโดยอาศัยอุปกรณ์วิเคราะห์โครงข่ายที่สามารถจuggling กับระบบการขนส่ง งานวิจัยนี้ได้พัฒนาแบบจำลองทางคลื่นศาสตร์ด้วยโปรแกรม ArcGIS ร่วมกับ Microsoft Visual Basic 6.0 เพื่อหาสถานที่ที่เหมาะสมโดยการประเมินสภาพภูมิศาสตร์ใช้พื้นที่ Fast shortest path Theory และ multi seed point Theory เกณฑ์การพิจารณาตำแหน่งที่เหมาะสมของโรงไฟฟ้าคือด้านทุนเชื้อเพลิงของการรวมไม้เชื้อเพลิงที่มีค่าเฉลี่ยที่สูง แบบจำลองดังกล่าวยุทธศาสตร์ใช้กับการศึกษาชุมชนที่ต้องการใช้ไฟฟ้าอย่างต่อเนื่อง และการขนส่งไม่ทำให้เกิดผลกระทบต่อสิ่งแวดล้อมมากเกินไป แบบจำลองลักษณะเชื้อเพลิงที่ใช้โรงไฟฟ้าขนาด 400 กิโลวัตต์ โดยใช้เทคโนโลยีแก๊สซิฟิเคชั่น ผลการศึกษาพบว่า ด้านทุนของเชื้อเพลิงที่ต้องการขนส่งไม้ที่เหมาะสมที่ 39.25 บาท/ตัน ซึ่งส่งผลให้ด้านทุนไฟฟ้าที่ 1.37 บาท/กิโลวัตต์-ชั่วโมง ด้วยอัตราผลตอบแทนภายในร้อยละ 31.11 อันเป็นระยะเวลาคืนทุนภายใน 3.21 ปี อย่างไรก็ตามด้านทุนเชื้อเพลิงในการขนส่งไม้ถูกแสดงในรูปแบบแผนที่ ผลจากการประเมินวัฎจักรวิทยาของโรงไฟฟ้าถูกพยากรณ์ด้านทุนสิ่งแวดล้อมที่มีค่า 0.09 บาท/กิโลวัตต์-ชั่วโมง ซึ่งน้อยกว่าผลกระทบต่อสิ่งแวดล้อมจากระบบสายทางของประเทศ