ชื่อเรื่องวิทยานิพนธ์

การปรับปรุงและประเมินสมรรถนะของใบพัครูปแพน อากาศสำหรับอุโมงค์ลมความเร็วต่ำ

ชื่อผู้เขียน

นายพงษ์ศิริ จรุยนนท์

วิศวกรรมศาสตรมหาบัณฑิต

สาขาวิชาวิศวกรรมเครื่องกล

คณะกรรมการสอบวิทยานิพนธ์

รศ. คร. สัมพันธ์ ไชยเทพ

ประธานกรรมการ

ผศ. คร. อภิวันท์ พลชัย

กรรมการ

ผศ. คร. วิวัฒน์ คล่องพานิช

กรรมการ

บทกัดย่อ

การวิจัยนี้มีวัตถุประสงค์เพื่อปรับปรุงสมรรถนะ ประสิทธิภาพ และสร้างความสัมพันธ์ ระหว่างความดันสูญเสียเทียบกับความเร็วที่หน้าตัดช่วงทำงานของอุโมงค์ลมความเร็วต่ำแบบเปิด ที่มีหน้าตัดช่วงทำงานขนาด 90x120 ตารางเซนติเมตร และใช้กำลังขับโดยใช้มอเตอร์ 3 เฟส 4 โพล ขับครงขนาด 3.7 กิโลวัตต์ โดยออกแบบและสร้างใบพัดหน้าตัดรูปแพนอากาศแบบ N.A.C.A.0012-B แปลนปีกสี่เหลี่ยมผืนผ้า ความยาวคอร์คคงที่ 0.1 เมตร รัศมีของใบพัด 0.5 เมตร และจำนวนใบพัด 6 ใบ เพื่อเปรียบเทียบกับการทำงานของใบพัดหน้าตัดแบบแผ่น แปลนปีกรูปสี่ เหลี่ยมผืนผ้า มุมพิทช์ 23 องศา ความยาวคอร์คคงที่ 0.18 เมตร รัศมีของใบพัด 0.5 เมตร และ จำนวนใบพัด 6 ใบ โดยแปรเปลี่ยนความเร็วรอบที่ตั้งคงที่ไว้ที่ค่าต่างกัน 6 ค่าความเร็วรอบ และ มุมพิทช์ 12 18 และ 23 องศา จากผลการวิจัย พบว่า สามารถปรับปรุงประสิทธิภาพของอุโมงค์ ลมจาก 15.2 % เป็น 19.0 % และความเร็วสูงสุดที่หน้าตัดช่วงทำงาน เพิ่มจาก 7.17 เมครต่อวินาที เป็น 9.36 เมตรต่อวินาที ที่ใบพัดหน้าตัดรูปแพนอากาสที่มุมพิทช์ 23 องสา บริเวณพื้นที่ใช้งานของ อุโมงค์ถมมีขนาด 420x720 ตารางมิลลิเมตร โดยมีความสม่ำเสมอของการกระจายความเร็วเฉลี่ย เท่ากับ 0.89 % แตกต่างกันเพียง 0.09 % และความสัมพันธ์ระหว่างความคันสูญเสียเทียบกับ ความเร็วที่หน้าตัดทำงานเป็นสมการโพลีโนเมียลดีกรี 2 มีค่าสัมประสิทธิ์ความคันสูญเสียเฉลี่ยใน ช่วงปรับสภาพการใหลเป็น 0.2485 ในช่วงทำงานเป็น 0.3187 และในช่วงเปลี่ยนรูปแบบการใหล เป็น 0.4882

Thesis Title

The Improvement and Performance Evaluation of an Airfoil-

Section Propeller for Low Speed Wind-Tunnel

Author

Mr. Pongsiri jaruyanon

M.Eng

Mechanical Engineering

Examining Committee:

Assoc. Prof. Dr. Sumpun Chaitep

Chairman

Asst. Prof. Dr. Apiwon Polchai

Member

Asst. Prof. Dr. Wiwat Klongpanich

Member

ABSTRACT

The objective of this research was aimed to improve the performance, efficiency and the development of a relationship between pressure drop and velocity at test section of the open type low-speed wind tunnel. The wind tunnel has a cross-section area of 90 x 120 square centimeters directly driven by a 3 phase 3.7 kilowatt 4 pole motor. The experiments was conducted on N.A.C.A.0012-B airfoil type propeller, with non-twisted rectangular planform shape and a constant chord length of 0.10 meters. The propeller has a radius of 0.5 meters and consists of 6 blades. Experimental result was compared with a conventional flat plate-type propeller which has a rectangular planform shape and constant pitch angle of 23° with a constant cord length of 0.18 meters. The latter propeller has a radius of 0.5 meters and 6 blades. Experiment was conducted by setting combination of variable parameters, i.e., 6 different rotation speeds and 3 pitch angles of airfoil type propeller set at 12° 18° and 23°. The results showed that airfoil type propeller, offered the improvement of efficiency of the wind tunnel from 15.2 % to 19.0 % and the maximum air velocity at the test section was increased from 7.17 m/s to 9.36 m/s at a particular fixed pitch angle of 23° of which the effective cross-section area of 420 x 720 square millimeters. The relationship between pressure drop with respect to the air velocity at the test section could be represented by a second degree polynomial equation with coefficients of the pressure drop in the flow developing section, the test section and the transition section of 0.2485, 0.3187 and 0.4882 respectively.