
 

Chapter 2 

Methodology 

 

This dissertation constructs indexes of volatility for the USA, Europe, and 

ASEAN by two ways are single index model and portfolio model, and then compare 

index of volatility and volatility index by using the predictive power of Value-at-Risk. 

Moreover, this dissertation finds out volatility spillover from the USA and Europe to 

ASEAN countries, test change conditional correlation between ASEAN countries and 

the USA, and between ASEAN countries and Europe following Asian crisis. 

Furthermore, this dissertation test whether conditional correlation are dynamics by 

using rolling windows, and examine the impact of the Asian crisis to the VaR 

thresholds. Therefore, methodologies in this dissertation are index of volatility, 

Value-at-Risk, and test statistic for testing differences in correlations, rolling 

windows, and examine the impact of the Asian crisis to the VaR thresholds in section 

2.1, 2.2, 2.3, 2.4, and 2.5, respectively. 

 

2.1 Index of Volatility 

This dissertation uses the price sector indices of S&P 500 for the USA and 

STOXX for Europe. There are 10 sector indices; however this dissertation aggregates 

price sector indices to be 3 sectors by using market capitalization as a weighted 

variable. For example, if we would like to aggregate sector 1, 2, 3 together, the model 

is as follows: 
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where P123t is the aggregate price sector index of sector 1,2, and 3, MVit is market 

capitalization of sector i (i = 1, 2, 3), and Pit is price sector index of sector i (i = 1, 2, 3). 

Then we compute returns of each sector as follows: 

 

, , , 1100 log( / )−= ×i t i t i tR P P      (2.2) 

 

where Pi,t and Pi,t-1 are the closing prices of sector i (i = 1, 2, 3) at days t and t-1.  

For ASEAN, we use stock indices of Indonesia, Thailand, and the Philippines 

to compute returns following equation (2.2). Then we construct an index of volatility 

for the USA, Europe and ASEAN by using the two following models: 

 

2.1.1 Single index model 

This dissertation constructs a single index model following these steps: 

(1) Compute portfolio returns by using market capitalization at the first 

day as a weighted variable, as follows: 
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where Portt is portfolio returns, MVi is market capitalization of sector i (i = 1, 2, 3), 

and  rit is returns of sector i (i = 1, 2, 3). 
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For ASEAN, we compute portfolio returns by assumed equal weight in 

every country. 

(2) Test stationary of portfolio returns, this dissertation uses the 

Augmented Dicky Fuller (ADF) test. The test is given as follows: 
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where equation (2.4) has no intercept and trend, equation (2.5) has intercept but no 

trend, and equation (2.6) has intercept and trend. The null hypothesis in equations 

(2.4), (2.5) and (2.6) are θ = 0, which means that yt is nonstationary (Dickey and 

Fuller, 1979). However, the ADF test accommodates serial correlation by explicitly 

modeling the structure of serial correlation, but not heteroscedasticity, while the 

Phillips-Perron (PP) tests accommodates both serial correlation and heteroscedasticity 

using non-parametric techniques. The PP test has also been shown to have higher 

power in finite samples than the ADF test (Phillips and Perron, 1988). 

The PP test estimates as follows: 

 

1t t t ty y xθ δ ε− ′Δ = + +       (2.7) 

 

the test is evaluated using a modified t-ratio of the form: 
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where α̂  is the estimate, tα  is the t-ratio of α̂ , ( )ˆse α  is the standard error of α̂ , and 

s is the standard error of the regression. In addition, 0γ  is a consistent estimate of the 

error variance in (2.7). The remaining 0f  is an estimator of the residual spectrum at 

frequency zero. The PP test is known as the non-augmented Dickey-Fuller test. 

(3) Estimating univariate volatility of portfolio returns from the first 

step by mean equation have constant term and autoregressive term (AR(1)) in all 

models. The univariate volatility is the index of volatility. Moreover, this dissertation 

computes RiskmetricsTM by using the exponentially weighted moving average model 

(EWMA) of portfolio returns. 

 

Univariate Volatility 

ARCH 

Engle, R.F. (1982) proposed the Autoregressive Conditional 

Heteroskedasticity of order p, or ARCH(p), follows: 
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GARCH 

Bollerslev, T. (1986) generalized ARCH(p) to the GARCH(p,q), model 

as follows: 
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where 0,>ω 0jα ≥ for j = 1,…,p and 0≥iβ  for i = 1,…,q are sufficient to ensure 

that the conditional variance ht > 0. 

The model also assumes positive shock ( 0tε > ) and negative shock 

( 0tε < ) of equal magnitude have the same impact on the conditional variance. 

GJR 

Glosten, L.R., et al. (1993) accommodate differential impact on the 

conditional variance of positive and negative shocks of equal magnitude. The 

GJR(p,q) model is given by: 
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where the indicator variable, ( )tI ε , is defined as:
1, 0
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. If p = q = 1, 

0>ω , 1 0α ≥ , 1 1 0α γ+ ≥ , and 1 0β ≥ then it has sufficient conditions to ensure that the 

conditional variance ht  > 0. The short run persistence of positive (negative) shocks is 

given by ( )1 1 1α α γ+ . When the conditional shocks, tη , follow a symmetric 
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distribution, the short run persistence is 1 1 / 2α γ+ , and the contribution of shocks to 

long run persistence is 1 1 1/ 2α γ β+ + . 

EGARCH 

Nelson, D. (1991) proposed the Exponential GARCH (EGARCH) 

model, which incorporates asymmetries between positive and negative shocks on 

conditional volatility. The EGARCH model is given by: 
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In equation (2.11), t iη − and t iη − capture the size and sign effects, 

respectively, of the standardized shocks. EGARCH in (2.11) uses the standardized 

residuals. As EGARCH uses the logarithm of conditional volatility, there are no 

restrictions on the parameters in (2.11). As the standardized shocks have finite 

moments, the moment conditions of (2.11) are straightforward. 

Lee, S.W. and Hansen, B.E. (1994) derived the log-moment condition 

for GARCH (1,1) as  

 

2
1 1(log( )) 0tE αη β+ <       (2.12) 

 

This is important in deriving the statistical properties of the QMLE. 

McAleer, M., et al. (2007) established the log-moment condition for GJR(1,1) as 
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The respective log-moment conditions can be satisfied even when 

1 1 1α β+ > (that is, in the absence of second moments of the unconditional shocks of 

the GARCH(1,1) model) and when 1 1/ 2 1α γ β+ + < (that is, in the absence of second 

moments of the unconditional shocks of the GJR(1,1) model). 

RiskmetricsTM 

RiskmetricsTM (1996) developed a model which estimates the 

conditional variances and covariances based on the exponentially weighted moving 

average (EWMA) method, which is, in effect, a restricted version of the ARCH(∞ ) 

model. This approach forecasts the conditional variance at time t as a linear 

combination of lagged conditional variance and the squared unconditional shock at 

time t-1. The RiskmetricsTM model estimate the conditional variances follows: 

 

   2
1 1(1 )t t th hλ λ ε− −= + −       (2.14)  

 

where λ  is a decay parameter. RiskmetricsTM (1996) suggests that λ  should be set at 

0.94 for purposes of analyzing daily data. 

 

2.1.2 Portfolio model 

This dissertation constructs the portfolio model by following these steps: 

(1) Test stationary of stock returns, this dissertation uses the 

Augmented Dicky Fuller (ADF) test. The test is given as follows: 
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where equation (2.15) has no intercept and trend, equation (2.16) has intercept but no 

trend, and equation (2.17) has intercept and trend. The null hypothesis in equations 

(2.15), (2.16) and (2.17) are θ = 0, which means that yt is nonstationary (Dickey and 

Fuller, 1979). However, the ADF test accommodates serial correlation by explicitly 

modeling the structure of serial correlation, but not heteroscedasticity, while the 

Phillips-Perron (PP) tests accommodates both serial correlation and heteroscedasticity 

using non-parametric techniques. The PP test has also been shown to have higher 

power in finite samples than the ADF test (Phillips and Perron, 1988). 

The PP test estimates as follows: 

 

1t t t ty y xθ δ ε− ′Δ = + +       (2.18) 

 

the test is evaluated using a modified t-ratio of the form: 
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where α̂  is the estimate, tα  is the t-ratio of α̂ , ( )ˆse α  is the standard error of α̂ , and 

s is the standard error of the regression. In addition, 0γ  is a consistent estimate of the 

error variance in (2.18). The remaining 0f  is an estimator of the residual spectrum at 

frequency zero. The PP test is known as the non-augmented Dickey-Fuller test. 
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(2) Estimate multivariate volatility of three sectors for Europe and the 

USA and three countries for ASEAN by mean equation so that they have constant 

term and autoregressive term (AR(1)) in all models. Then compute variance and 

covariance matrix. 

(3) Compute index of volatility by using market capitalization at the 

first observation is a weighted variable. This dissertation has three sectors so that we 

have the three conditional variances and three covariance estimated. It follows that: 

 

1 2 3

2 2 2
1 2 3 1 2 12 1 3 13 2 3 232 2 2= + + + + +t t t t t t tIVol h h h h h hλ λ λ λ λ λ λ λ λ   (2.19) 

 

where IVolt is index of volatility, hit is conditional variances of sector i (i=1,2,3), hijt is 

covariance of sector i (i=1,2,3), and 1
1
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The number of covariance increases dramatically with m, the number 

of assets in the portfolio. Thus, for m = 2, 3, 4, 5, 10, 20, the number of covariance is 

1, 3, 6, 10, 45, 190, respectively. This increases the computation burden significantly. 

(See details in McAleer, M., 2008) 

For ASEAN, we assumed equal portfolio weight for all assets. 

Therefore, 1 2, ,λ λ and 3λ in equation (2.19) are equal 1/3. 
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Multivariate volatility 

VARMA-GARCH 

The VARMA-GARCH model of Ling, S. and McAleer, M. (2003), 

assumes symmetry in the effects of positive and negative shocks of equal magnitude on 

conditional volatility. Let the vector of returns on m (≥2) financial assets be given by: 

 

1( | )−= +t t t tY E Y F ε       (2.20) 

=t t tDε η        (2.21) 
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where 1/ 2
1 1 , 1( ,..., ) , ( ,..., ) , ( ), ( ,..., ) ,′ ′ ′= = = =t t mt m t i t t t mtH h h D diag hω ω ω η η η

2 2
1( ,..., ) ,′=

r
t t mt kAε ε ε and lB  are ×m m  matrices with typical elements ijα  and ijβ , 

respectively, for i,j = 1,…,m, and Ft is the past information available to time t. 

Spillover effects are given in the conditional volatility for each asset in the portfolio, 

specifically where kA  and lB  are not diagonal matrices. For the VARMA-GARCH 

model, the matrix of conditional correlations is given by ( )′ = Γt tE ηη . 

VARMA-AGARCH 

An extension of the VARMA-GARCH model is the VARMA-

AGARCH model of McAleer, M., et al. (2009), which assumes asymmetric impacts 

of positive and negative shocks of equal magnitude, and is given by: 
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where Ck are ×m m  matrices for k = 1,…,p and I( tη )=diag(I( itη )) is an ×m m  matrix, 

so that ,

,

0, 0
1, 0
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k t

k t

I
ε

ε
. VARMA-AGARCH reduces to VARMA-GARCH when Ck =0 

for all k. 

CCC 

If the model given by equation (2.23) is restricted so that Ck = 0 for all k, 

with Ak and Bl being diagonal matrices for all k,l, then VARMA-AGARCH reduces to: 
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Which is the constant conditional correlation (CCC) model of 

Bolerslev, T. (1990), for which the matrix of conditional correlations is given 

by ( )′ = Γt tE ηη . As given in equation (2.24), the CCC model does not have volatility 

spillover effects across different financial assets, and does not allow conditional 

correlation coefficients of the returns to vary over time. 

DCC 

Engle, R.F. (2002) proposed the Dynamic Conditional Correlation 

(DCC) model. The DCC model can be written as follows: 

 

1| ~ (0, ), 1,...,t t ty F Q t T− =      (2.25) 
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,= Γt t t tQ D D        (2.26) 

 

where 1/ 2 1/ 2
1( ,..., )t t mtD diag h h=  is a diagonal matrix of conditional variances, with m 

asset returns, and Ft is the information set available at time t. The conditional variance 

is assumed to follow a univariate GARCH model, as follows: 

 

, , , ,
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= =
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it i i k i t k i l i t l
k l
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When the univarate volatility models have been estimated, the 

standardized residuals, /=
it it ity hη , are used to estimate the dynamic conditional 

correlations, as follows: 

 

1 2 1 1 1 2 1(1 ) − − −′= − − + +t t t tQ S Qφ φ φη η φ     (2.28) 

{ } { }1/ 2 1/ 2( ( ) ( ( ) ,− −Γ =t t t tdiag Q Q diag Q    (2.29) 

 

where S is the unconditional correlation matrix of the returns shocks, and equation (2.29) 

is used to standardize the matrix estimated in (2.28) to satisfy the definition of a 

correlation matrix. For details regarding the regularity conditional and statistical 

properties of DCC and the more general GARCC model, see McAleer, M., et at. (2008).  

The parameters in models (2.8), (2.9), (2.10), (2.11), (2.22), (2.23), 

(2.24), and (2.27) can be obtained by maximum likelihood estimation (MLE) using a 

joint normal density, as follows: 
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where θ  denotes the vector of parameters to be estimated in the conditional log-

likelihood function, and | |tQ  denotes the determinant of tQ , the conditional 

covariance matrix. When
t

η does not follow a joint normal distribution, equation 

(2.30) is defined as the Quasi-MLE (QMLE). 

Then, compare index of volatility and volatility index by using the 

predictive power of Value-at-Risk. The details of Value-at-Risk are in section 2.2.  

 

2.2 Value-at-Risk 

Value-at-Risk (VaR) needs to be provided to the appropriate regulatory 

authority at the beginning of the day, and is then compared with the actual returns at 

the end of the day. (see McAleer, M., 2008) 

For the purposes of the Basel II Accord penalty structure for violations arising 

from excessive risk taking, a violation is penalized according to its cumulative 

frequency of occurrence in 250 working days, which is shown in Table 2.1. 

A violation occurs when VaRt > negative returns at time t. Suppose that 

interest lies in modeling the random variable Yt, which can be decomposed as follows 

(see McAleer, M. and da Veiga, B., 2008a): 

 

1( | )−= +t t t tY E Y F ε       (2.31) 
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This decomposition suggests that Yt is comprised of a predictable 

component, 1( | )−t tE Y F , which is the conditional mean, and a random component, tε . 

The variability of Yt, and hence its distribution, is determined entirely by the 

variability of tε . If it is assumed that tε  follows a distribution such that: 

 

tε ~ ( , )t tD μ σ        (2.32) 

 

where tμ and tσ are the unconditional mean and standard deviation of tε , respectively, 

the VaR threshold for Yt can be calculated as: 

 

  1( | )−= −t t t tVaR E Y F ασ  

 

where α is the critical value from the distribution of tε to obtain the appropriate 

confidence level. Alternatively, tσ can be replaced by alternative estimates of the 

conditional variance to obtain an appropriate VaR.  

The Basel II encourages the optimization problem with the number of 

violations and forecasts of risk as endogenous choice variables, which are as follows: 

 

{ }60 1{ , }
max (3 ) , −= − + −

t
t tk VaR

Minimize DCC k VaR VaR   (2.33) 

 

where DCC is daily capital charges, k is a violation penalty (0 1≤ ≤k ) (see Table 2.1), 

60VaR is mean VaR over the previous 60 working days, and VARt is Value-at-Risk for day t. 



 24

 
2.3 Test statistic for testing differences in correlations 

This dissertation also would like to find out about volatility spillover from Europe 

and the USA to ASEAN countries. Countries in ASEAN which use in this section are 

names, Indonesia, Malaysia, the Philippines, Singapore, and Thailand. We calculate returns 

follow equation (2.2) of stock price indices of Indonesia, Malaysia, the Philippines, 

Singapore, Thailand, the USA and Europe and we use VARMA-AGARCH model follow 

equation (2.23) to find out returns and volatility spillover from the USA and Europe to 

ASEAN countries by mean equation have constant term, autoregressive (AR(1)) term, and 

moving average (MA(1)) term. We also would like to test whether the Asian crisis affect 

conditional correlation between ASEAN countries and the USA, Europe. Therefore, we 

estimate VARMA-AGARCH model follow equation (2.23) for the entire sample (5 

January 1988 to 13 March 2009), the sub-sample before the Asian crisis (5 January 1988 to 

27 December 1996) and the sub-sample after the crisis (5 January 1998 to 13 March 2009) 

to find out conditional correlation matrices between ASEAN countries, Europe and the 

USA. Let 1ρ and 2ρ  be the correlations from the after and before Asian crisis period, 

respectively. The test statistic for testing differences in correlations is then given by 
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where 1n and 2n are sample sizes used to calculate 1ρ and 2ρ , respectively. 
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2.4 Rolling windows 

Using the ‘rolling windows’ approach, we can examine the time-varying 

nature of the conditional correlation using the VARMA-AGARCH model. Rolling 

windows is a recursive estimation procedure whereby the model is estimated for a 

restricted sample, then re-estimated by adding one observation to the end of the 

sample and deleting one observation from the beginning of the sample. The process is 

then repeated until the end of the sample. If the rolling conditional correlations are 

found to vary substantially over time, the assumption of constant conditional 

correlations may be too restrictive. In order to strike a balance between efficiency in 

estimation, and a viable number of rolling regressions, the rolling window size is set 

at 1,000. 

 

2.5 Examine the impact of the Asian crisis to the VaR thresholds 

This section constructs portfolio returns of each country in ASEAN with 

Europe and the USA, and in order to eliminate exchange rate risk, all returns are 

converted to US dollars. Then forecast the VaR thresholds for the period 3 January 

2007 to 13 March 2009 by using observation from the previous year, 2006, and the 

number of violations is recorded. The sample is then expanded by adding 

observations from next previous year, 2005, to the beginning of the sample (1988), 

and again the VaR threshold for the period 3 January 2007 to 13 March 2009 is 

forecasted. This process is repeated until the beginning of the sample is reached. For 

the details of the VaR threshold are in section 2.2 
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Table 2.1  Basel Accord Penalty Zones 

 

Zone Number of Violations Increase in k 

Green 0 to 4 0.00 

Yellow 5 0.40 

 6 0.50 

 7 0.65 

 8 0.75 

 9 0.85 

Red 10+ 1.00 

    Note: The number of violations is given for 250 business days. 

 


