
 

 

 

Chapter 2 

Theoretical Foundations 

In this chapter, the multivariate volatility GARCH model is presented in Dynamic 

conditional and smooth transition correlation approach that has to test about time vary 

correlation before estimation. The fractional properties of variables are tested and are 

estimated by Semi Parametric ARFIMA model. The time vary CAPM are presented by 

State Space Estimator, Quantile regression and Bayesian estimator. 

 

Time-Varying Correlation Models   

The mean and volatility equations, with the following two subsections describing 

the Dynamic conditional and smooth transition correlation models are discussed in this 

section  

The two-dimensional vector of oil price and each Asia stock market (yt) has mean 

equation  

 

TtryEy tttt ,...,2,1,]/[ 1 =+ℑ= −        (1) 

 

where 1−ℑt   is all information available at time t-1, together with values of 

exogenous variables for time t. Since we are interested in the role oil prices in the 

evolution of yt, 1−ℑt   together with lagged stock returns. Allowing oil prices changes 

affect stock returns for each country enables us to capture correlations. The mean 

equations in (1) are assumed linear. The conditional covariance follow  

 

),0(~1 ttt HNr −ℑ         (2) 

 

where N denotes the bivariate normal distribution. From (2), each univariate error 

process can be written   
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2,1,,
2/1

,, == ihr ttttttt ε          (3) 

 

Where )/( 1
2
,, −ℑ= tttttt rEh and tt ,ε is a sequence of independent random variables 

with mean zero and variance one. As common in empirical analyses, each conditional 

variance is assumed to follow a univariate GARCH (1,1) process  

 

1,1
2

1,10, −− ++= tiiitiiittt hrh βαα        (4) 

 

with non-negativity and stationarity restrictions imposed.   

 Rather than modelling the off-diagonal elements of H directly, the definition  

 
2/1

,22.11,12 )( tttt hhh ρ=         (5) 

 

allows the focus to be placed on the time-varying correlations tρ . The Dynamic 

conditional and smooth transition models then differ in their definitions of tρ . The 

constant conditional correlation (CCC) model simply assumes that tρ  is constant over 

time (McMaleer, 2005,Bauwens, L., S. Laurent and V.K. Rombouts, 2006).  

  

Dynamic Conditional Correlation Model  

Engle (2002) specifies the dynamic conditional correlation model through the 

GARCH(1,1)-type process   

 

1,,1,21,112,, )1( −−− ++−−= tjitttji qq βεαεβαρ      (6) 

 

Where 12ρ   is the (assumed constant) unconditional correlation between t,1ε   and 

αε ,,2 t , is the news coefficient and β is the decay coefficient. In order to constrain the 

conditional correlation tρ  to lie between -1 and +1, tq ,2,1   from (6) and the conditional 

correlation is obtained from   
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2/1

,2211 ),/( ttt qqq=ρ                                      (7) 

 

The model is mean-reverting provided 1<+ βα , and when the sum is equal to 1 

the conditional correlation process in (6) is integrated (Ling, S., and M. McAleer, 2003 a 

, Nektarios Aslanidis, 2007).  

  

Smooth Transition Conditional Correlation Models 

The smooth transition conditional correlation model considered by Silvennoinen 

and Terasvirta (2005) assumes the presence of two extreme states (or regimes) with state-

specific constant correlations. These correlations are allowed to change smoothly 

between the two regimes as a function of an observable transition variable. The 

conditional correlation tρ   follows  

 

),;()),;(1( 21 csGcSG ttttt γργρρ +−=      (8) 

 

in which the transition function ),;( csG tt γ  is assumed continuous and bounded 

by zero and unity, γ  and c are parameters, whereas st  is the transition variable.  Since (8) 

implies tρ  = 1ρ   when G = 0 and tρ  = 2ρ   when G = 1, extreme values of the transition 

function identify the distinct correlations that apply in these regimes. A weighted mixture 

of these two correlations applies when 0 < Gt < 1. A plausible and widely used 

specification for the transition function is the logistic function  

 

( )[ ] 0,exp1/1),;(( >−−+= γγγ cscsG ttt       (9) 

 

where the parameter c is the threshold between the two regimes. The slope 

parameter  

γ> 0 determines the smoothness of the change in the value of the logistic function 

and thus the speed of the transition from one correlation state to the other. When 

),;(, csG tt γγ ∞→ becomes a step function 0),;(( =csG tt γ    if st < c their transition 

variable can be deterministic or stochastic.  )1),;(( csifcsG ttt >⋅⋅=γ , and the transition 



 

 

9 

 

between the two extreme correlation states becomes abrupt. In that case, the model 

approaches a threshold model in correlations. An important special case of the smooth 

transition conditional correlation model uses time as the transition, Ttst /=  , which gives 

rise to the time-varying conditional correlation (TVCC) model. The (smooth) change 

between correlation regimes, and as  ∞→γ   captures a structural break in the 

correlations (Bwo-Nung Huang, 2005 and Annastiina Silvennoinen, 2007). The Pooled 

AIC are used for selecting Smooth Transition Conditional Correlation Models (philip 

Hans Franses, 2004). The alternative AIC for 2-regime SETAR model as the sum of 

AICs for AR models in the two regimes, that is  

 

)1(2)1(2ˆlnˆln),( 21
2
22

2
1121 +++++= ppnnppAIC σσ    

 

where jn ,j=1,2, is the number of observations in the jth regime,and 2ˆèσ , j=1,2,,is 

the variance of the residuals in the jth regime. The BIC for a SETAR model can be 

defined analogously as  

 

2211
2
22

2
1121 ln)1(ln)1(ˆlnˆln),( npnpnnppBIC +++++= σσ   

 

For given upper bounds *
1p and *

2p , respectively, the selected lag orders in the two 

regimes are those for which the information criterion is minimized. 

The SETAR model assumes that the threshold variable tq  is chosen to be a 

lagged value of the time series itself. The model is assumed in both regimes, a 2-regime 

SETAR model is given by 

 

0,1 1,1 1 1

0,2 1,2 1 1

.
.

t t t
t

t t t

If c
If c

ϕ ϕ ρ ε ρ
ρ

ϕ ϕ ρ ε ρ
− −

− −

+ + ≤⎧
= ⎨ + + >⎩

 

 

 

An alternative way to write the SETAR model is 
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,1ijt ij it jt i j Kσ ρ σ σ= ≤ < ≤

( ) [ ]( ) ( ) [ ]0,1 1,1 1 1 0,2 1,2 1 11t t t t t tI c I cρ ϕ ϕ ρ ρ ϕ ϕ ρ ρ ε− − − −= + − > + + > +    

 

where I [A] is an indicator function with I [A]=1 if the event A occurs and  I [A] 

= 0 otherwise.  

The SETAR model assume that the border between the two regime is given by a 

specific value of the threshold variable In particular, in the 2-regime SETAR model, 

Ðy will be estimated within the 1−ty  (Philip Hans Franses, 2004 and Zivot., 2006). 

 

Testing for constant correlations in a multivariate GARCH model 

The constant-correlation hypothesis in a multivariate GARCH model is detected 

by Lagrange Multiplier (LM) (Tse.Y.K., 2000). The constant-correlation model set the 

conditional variances of yit follow a GARCH process, while the correlations are constant. 

Denoting Г={ρij} as the correlation matrix, we have 

 
2 2 2

, 1 , 1, 1,...,it i i i t i i ty i Kσ ω α σ β− −= + + =                            (10) 

 

      (11) 

 

The assumption ωi, αi and βi are nonnegative, αi +βi <1, for i=1,2,K and 

Г is positive definite. The LM test can then be applied to test for the restrictions. 

This approach only requires estimates under the constant-correlation model, and can thus 

conveniently exploit the computational simplicity of the model. 

The equations allow time-varying correlations  

 

,1,1, −−+= tjtiijijijt yyδρρ        (12) 

 

The conditional covariances are given by 

 

jtitijtijt σσρσ =         (13) 
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Note that there are N=K2+2K parameters in the extended model with time-varying 

correlations. The constant-correlation hypothesis can be tested by examining the 

hypothesis H0: ,0=ijδ  Kji ≤<≤1  Under H0, there are M=K(K-1)/2 independent 

restrictions. The optimal properties under the null H0 is the LM test .The model which is 

deified standardised residual as ititit y σε /=  might be written as 

 

1,1, −−′+= tjtiijijijt εεδρρ        (14) 

 

As itε depends on other parameters of the model through itσ , analytic derivation of 

the LM statistic is intractable. The LM statistic of H0 under the above framework which 

denote Dt as the diagonal matrix with diagonal elements given by itσ  , and Г={ρijt}  as 

the time-varying correlation matrix. Hence the conditional-variance matrix of yt is given 

by tttt DDΓ=Ω . Under the normality assumption the conditional log-likelihood of the 

observation at time t is given by (the constant term is ignored) 

 

 

      

 

 

for i=1,…,K  and the log-likelihood function l is given by ∑ =
=

T

t tll
1

. For 

simplicity, the assumption of 0iy  and 2
0iσ  are fixed and known. This assumption has no 

effects on the asymptotic distributions of the LM statistic. The derivatives of 2
itσ with 

respect to ii αω , and iβ for i =1... K 
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where the starting values are given by 2
011 ,1 iii ed σ==  and 2

01 ii yf =  The first 

partial derivatives of tl  with respect to the model parameters are given by 

 

 

 

                       (16) 

 

 

 

 

Where ttKttt εεεε 1**
1

* ),...,( −Γ=′=  and { }.1 ij
tt ρ=Γ−  thus, if we denote the parameters 

of the model as these analytic derivatives can facilitate the evaluation of the MLE of the 

extended model if desired. Note 

that on Γ=ΓtH :0  for all t, so that tt εε 1* −Γ=  and ijij
t ρρ =  . In this case, tε  are just the 

standardized residuals calculated from the algorithm suggested by We shall denote θ̂  as 

the MLE ofθ  under 0H  

The N-element score vector given by θ∂∂= /ls and V  as the N*N information 

matrix given by ( )θθ ′∂∂∂−= /2lEV , where E(.) denotes the expectation operator, the 

LM statistic for 0H  is given by sVs ˆˆˆ 1−′  , where the hats denote evaluation at θ̂ . V may be 

replaced by the (negative of the) Hessian matrix or the sum of the cross products of the 

first derivatives of tl . The S is denoted the T*N matrix the rows of which are 

the partial derivatives for t=1,…T . the LM statistic for H0 can be calculated using the 

following formula  

 

( ) sSSsLMC ˆˆˆˆ
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′′=                      (17) 

            ( ) ,ˆˆˆˆ 1
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where l  is the T*1 column vector of ones and Ŝ  is S evaluated θ̂  . Under the 

usual regularity conditions LMC is asymptotically distributed as χ2M. Eq. (18) shows that 

LMC can be interpreted as T times R2, where R2 is the uncentered coefficient of 

determination of the regression of l  on Ŝ  . It is well-known that other forms of the LM 

statistic are available. For example, further simplification can be obtained by making use 

of the fact that in S′ˆ l  the elements corresponding to the unrestricted parameters is zero. 

Eq. (18) is a convenient form. 

 

 

 

 

 

 

 

 

 

The first partial derivatives of tl with respect to ωi, αih and βik (p+q+1 derivatives 

altogether) can be calculated using (16), with eiht and fikt replacing eit and fit, respectively. 

 

Long Memory Time Series 

A stationary process ty has long memory, or long range dependence, if its 

autocorrelation function behaves like  

 

                          ∞→→ − kaskCk αρρ )(                          (19) 

 

where ρC  is a positive constant, and α  is a real number between 0 and 1. Thus 

the autocorrelation function of a long memory process decays slowly at a hyperbolic rate. 

In fact, it decays so slowly that the autocorrelations are not summable: 
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For a stationary process, the autocorrelation function contains the same 

information as its spectral density. In particular, the spectral density is defined as: 

 

                               

   

Where ω  is the Fourier frequency (Halmilton, 1994). From (1) it can be shown 

that 

 

      

                                            (20) 

 

Where fC  is a positive constant. So for a long memory process, its spectral 

density tends to infinity at zero frequency. Instead of using α , in practice use 

 

    H=1- ,)1,5.0(2/ ∈α                                          (21) 

 

Which is known as the Hurst coefficient (Hurst, 1951) to measure the long 

memory in ty . The larger H is the longer memory the stationary process has. 

Based on the scalling property in (19) and the frequency domain property in (20), 

Hosking (Hosking, 1981) independently showed that a long memory process ty can also 

be modeled parametrically by extending an integrated process to a fractionally integrated 

process. In particular, allow for fractional integration in a time series  ty  as follow: 

 

                        tt
d uyL =−− )()1( μ                                            (22) 

 

where L denotes the lag operater , d is the fractional integration or fractional 

difference parameter , 
tμ  is a stationary short-memory disturbance with zero mean. 

The time series is highly persistent or appears to be non-stationary, let d = 1 and 

difference the time series once to achieve stationarity. However, for some highly 

persistent economic and financial time series, it appear that an integer difference may be 

1( ) ( )
2

ikf k e
k

ωω ρ
π

∞
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( ) 1 0ff C asαω ω ω−→ →
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too much, which is indicated by the fact that spectral density vanishes at the zero 

frequency for the differenced time series. To allow for long memory and avoid taking an 

integer of ty , allow d to be fractional. The fractional difference filter is defined as 

follows, for any real d > -1:   

 

                                                                       

                                (23) 

 

With binomial coefficients:  

                         

Notice that the fractional difference filter can be equivalent treated as an infinite 

order autoregressive filter. It can be show that when 2/1>d , ty is stationary and has 

short memory , and is sometimes refer to as anti-persistent.  

When a fractionally integrated series ty  has long memory, it can also be shown 

that 

 

                                      2/1−= Hd                                                    (24) 

 

and thus d and H can be used interchangeably as the measure of long memory. 

Hosking(1981) showed that the scaling property in (19) and the frequency domain 

property in (20) are satisfied when 210 /d << . 

 

ARFIMA models 

The traditional approach to modeling an I(0) time series ty is to use the ARIMA 

model: 

 

                                    (25) 

 

Where  ( )Bφ  and ( )Bθ are lag polynomials 
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With root out side the unit circle, and  t∈  is assumed to be an i.i.d normal random 

variable .this is usually referred to as the ARMA (p,d,q) model. By allow d to be the real 

number instead of a positive integer, the ARIMA model becomes the Autoregressive 

fractionally integrated moving average (ARFIMA) model. The stationary FARIMA 

model is -1/2<d<1/2,(Sowel, 1992). The ARFIMA or FARIMA was extended by Beran 

(Beran j. , 1995). 

 

                        (26) 

 

where  δ , -1/2< δ<1/2 and m is the number of times that yt  must be differenced to 

achieve stationarity.  The difference parameter is given by d = δ+m. The restriction of  m 

is either 0 or 1 , when m=0, μ is the expectation of  yt; in contrast, when m=1, μ is the 

slop of the linear trend component in  yt. 

 

SEMIFAR models  

Many observed time series exhibit apparent trends. Forecasts will differ greatly, 

depending on how these trends are modelled. A trend may be deterministic, i.e. defined 

by a deterministic function and purely stochastic or mixture of both.    

SEMIFAR models are define by (Beran J. A., 1999): A Gaussian process iY  is 

called a semiparametric fractional autoregressive model (or SEMIFAR model) or order p 

, if there exists a smallest integer { }1,0∈m  such that 

 

              ( )( ) ( ){ } iii
m tgYBBB =∈−−− )(11 δϕ                                       (27) 

 

where ( )0.5,0.5δ −∈ .  

 

Estimation for SEMIFAR model Let  

( )
1

1
q

ji
j

j
B Bθ θ

=

= −∑

( )( ) ( ){ } ( )1 1 m
tφ B B B y μ θ B t

δ− − − ∈=



 

 

17 

 

( ) ( )tt
pd ο

ο
οοο

ο
ο ησφφσθ ,,,1,,

2 2
,, ∈∈ == K   be the true unknown parameter vector  

in (26) where { }1,02/12/1, 00000 ∈<<−+= mandmd δδ . Combining maximum 

likelihood with kernel  estimation , the following method for estimating 0θ and the trend 

function g is obtained in (Beran J. A., 1999): Let K  be a symmetric polynomial kernel 

define by 
 

 

,  

 

and { },...2,1,0,10)( ∈= > rxifxK and the coefficient lα  such that 1)(1
1 =−∫ dxxK . 

Let ( )Nnbn ∈ be a sequence of positive bandwidths such that ∞→→ nn nbb and0 and 

define ( ) ( )mtgtg ii ;ˆˆ =  by 

 

 

 

                                              

                      (28) 

 

where )0~,1for()1(~
1 ==−= YsetmYBY j

m
j . Using equations (9) and (10), define 

approximate residuals 
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−− −=
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jijijji mtgYcae ηηη                                         (29) 

 

With coefficient jj ca and  obtained from (9), and denote by 1/)()( θηθ ii er =  the 

standardized residual as a function of a trial value ( )tm pφφδθ σ ,...,1,,2 +∈= .  Then θ̂  is 

defined by maximizing the approximate log-likelihood 
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1(2 ) [ log ( ) log ( ) ] *D f x f x dxij
i j

π οπ θ θπ θ θ
∂ ∂−= ∫ =− ∂ ∂

with respect to )(ˆand itgθ  is set equal to ).ˆ;(ˆ mtg i  

 The asymptotic behavior of θ̂andĝ  is derived in Beran(1999). As 

∞→n , ĝ  converges in probability to g , the optimal mean squared error of ĝ is 

proportional to ( ) ( ) )ˆ(25/24 θθδδ −−− nn and converges in distribution to a zero mean 

normal vector  with covariance matrix 12 −= DV  where  

 

 

   

                    

  (31) 

 

with ( ) ( )Tp
T οοοοο ηηδοσηοσθ 1,,2,,2

,*,2
,* +∈=∈= K . The same result hold if  a consent 

model choice criterion is used for the estimation of the autoregressive order p.It should be 

emphasized , in particular , that here both , the integer differencing parameter 

[ ]5.0+= oo dm  and the fractional differencing parameter ooo md −=δ  are estimated 

from the data. Also, the same central limit theorem holds if the innovation i∈ are not 

normal, and satisfy suitable moment conditions. Finally note that the asymptotic 

covariance matrix does not depend on om  

 

R/S Statistic 

The R/S statistic is the range of partial sum of deviation of a time series from its 

mean, rescaled by its standard deviation. Specifically, consider a time series series ty for t 

= 1,…,T.   The R/S statistic is defined as: 

 

 

                                          (32) 
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where ⇒  denote weak convergence and V is  range of a Brownian bridge on the 

unit interval. Lo(1991) gives selected quantiles of V  

 Lo(1991) pointed out that the R/S statistic is not robust to short range 

dependence. In particular, if ty   is autocorrelated(has short memory) then the limiting 

distribution of TQT /  is V scaled by the square root of  the long run variance of  ty . 

To allow for short range dependence in ty ,Lo(1991) modified the R/S statistic as follow: 

 

 

 

             

 

         

                     (33) 

 

Where the sample standard deviation is replaced by the square root of the Newey-

West estimate of the long run variance with bandwidth 
2q . Lo(1991) showed that if there 

is short memory but no long memory in ty , TQ
~  also converges to V , the range of a 

Brownian bridge. 

 

GPH Test 

Based on the fractionally integated process representation of a long memory time 

series, (Geweke, 1983)  proposed a semi-nonparametric approach to testing for long 

memory. In particular, the spectral density of the fractionally integrated process ty  is 

given by: 
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where ω  is the Fourier frequency, and  )(ωuf  is  the spectral density 

corresponding to  tu . Note that the fractional difference parameter d can be estimated by 

the following regression: 

                                                

j
j

j edf +−= )](sin4ln[)(ln
2

2 ω
βω                                                   (35) 

 

for )(,...,2,1 Tnj f= . Geweke and Porter – Hudak (Geweke, 1983) showed that using a 

periodogram estimate of  )( jf ω , the least square estimate d̂  using the above regression 

is normally integrated in large samples if αTTn f =)(  with 10 <<α   
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and U is the sample mean of .,...,1, fj njU = Under the null hypothesis of no long 

memory )0( =d , the t-statistic 

 

 

                                                        

 

            (18) 

 

It has a limiting standard normal distribution. 
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Model overview of Long Memory Time Series 

The raw daily data, Thai and Asia stock index, N225 (Nikkei Stock Average 225) 

Tokyo Stock Exchange, KLSE (KLSE Composite Index), Malaysian stock market, 

TWSE (Taiwan's composite index) Taiwan Stock Exchange, SETI (SET Composite 

Index) the Stock Exchange of Thailand, SSEC (Shanghai Composite Index) Shanghai 

Stock Exchange, The BSESN (Bombay SE Sensitive Index) Bombay Stock Exchange, 

JKSE (Jakarta Composite) Indonesia Jakarta Composite, PSI (PSE Composite Index) 

Philippine Stock Exchange, KS11 (KOSPI Index) Korean Stock Exchange are collected 

from Reuters for the period November 10, 1998 to November 10, 2008. 

A stationary process ty  is the set of log daily price Asia Indexes. Based on the 

scalling property in (19) and the frequency domain property in (20) showed that a long 

memory process ty can also be modeled parametrically by extending an integrated 

process to a fractionally integrated process. The fractional integration in a time series  ty  

as follow: 

 

                                                                      

 

 where B denotes the lag operater , d is the fractional integration or fractional 

difference parameter , 
tμ is a stationary short-memory disturbance with zero mean. 

   

SEMIFAR models are define by (Beran J. A., 1999) such that 

 

                                    

                     (36) 

 

The SEMIFAR model extended by δ, m which -1/2< δ<1/2 for any d > -1/2. The 

number of times is m that ty must be differenced to achieve stationary (Beran j. , 1995). 

The difference parameter is given by d = δ+m. The restriction of  m is either 0 or 1 , 

( )( ) ( ){ }1 1 ( )m
i i iB B B Y g tδφ − − − =∈

1 d( B) (y μ) ut t− − =
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when m=0, μ is the expectation of  ty ; in contrast, when m=1, μ is the slop of the linear 

trend component in  ty  

To allow for a possible deterministic trend in a time series, in addition to a 

stochastic trend, long memory and short memory component. The SEMIFAR model is 

based on the following extension to the FARIMA (p,d,0) model. The constant term μ is 

replaced by g(it), a smooth trend function on [0.1], with i=t/T.  Using BIC choose 

autoregressive order p which is proposed by (Beran J. A., 1999)   

 

Financial and Econometric Model Base with Time Varying 

In this section, we are going to give a brief summary about the time varying 

models, such us State Space CAMP, Bayesian CAMP and Quantile regression CAMP 

that economists often used. State Space modeling in macroeconomics and finance has 

become widespread over the last decade. Many dynamic time series models in economics 

and finance may be represented in State Space form, as the system of equation. The work 

of (Zellner and Chetty 1965) shows the optimal Bayesian portfolio problem by Bayes’ 

rule, the posterior density ( )p r θ is proportional to the product of the sampling density 

(the likelihood function) and the prior density, ( ) ( )f r pθ θ . The Koenker and Bassett 

(1978) developed the median (quantile) regression estimator to minimize the 

symmetrically weighted sum of absolute errors (where the weight is equal to 0.5) to 

estimate the conditional median (quantile) function. Then we will present an integrated 

procedure to construct an appropriate model for the stock data.  

 

State Space CAPM 

Typically, the State Space models can be found in most books (cf. Durbin & 

Koopman (2001), and Chan (2002)). The State Space model equation can be compactly 

expressed as 

1

( ) 1 ( ) 1 ( ) 1
.t

m N m N m m m Nt
t t t ty

α
δ α μ+

× × + × × × ×

⎛ ⎞
Φ= + +⎜ ⎟

⎝ ⎠
      (37) 

where tα ~ N(a, P), tμ ~ WN (0,1)  

and
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 The initial value parameters are summarized in the (m + 1) × m matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′

=Σ
a
P

. 

The smoothed estimate of the response yt and its variance are computed using 

tttt Zcy α̂ˆ +=      ( ) ( ) tnttnt ZYZY ′= αα varvar     (38) 

 

The smoothed disturbance estimates are the estimates of the measurement 

equations innovations tε  and transition equation innovations tη  based on all available 

information nY , and are denoted [ ]ntt YE αε =ˆ ( )or t nε  and [ ]ntt YEηη =ˆ ( )or t nη , 

respectively. The computation of tε̂ and tη̂  from the Kalman smoother algorithm is 

described in Durbin & Koopman (2001). These smoothed disturbance estimates can be 

useful for parameter estimation by maximum likelihood and for diagnostic checking. The 

vector of prediction errors vt and prediction error variance matrices Ft are computed from 

the Kalman filtered recursions. 

State Space representation of a time varying parameter regression model consider 

a Capital Asset Pricing Model (CAPM) with time varying intercept and slope 

, ,t t M t M t ty x vα β= + + ,  tv ~WN, 

ttt ξαα +=+1  ,  tξ ~WN,     (39) 

, 1 ,M t M t tβ β ς+ = +   tς ~WN, 

where ty  denotes the return on an asset in excess of the risk free rate, and 

,M tx denotes the excess return on a market index. In this model, both the abnormal excess 

return tα   and asset risk tM ,β are allowed to vary over time following a random walk 

specification. Let ),( , ′= tMtt βαα , ),1( , ′= tMtt xx , ),( ′= ζξ σσ
tt diagcccH and vtG σ= . 

Then the State Space form equation (37) of equation (39) is 
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Since tα is I(1) the initial state vector 1α  requires an infinite variance so it is 

customary to set a = 0 and P = 2Ik  with ∞→k . Using equation (23), the initial variance 

is specified with *p = 0 and p∞  = 2I . Therefore, the initial state matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′

=Σ
a
P

for the 

time varying CAPM has the form
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

−
=∑

0
1

0

0
0
1

. The State Space parameter matrix tΦ  in 

equation (40) has a time varying system element Zt= tx′ .The specification of the State 

Space form for the time varying CAPM requires values for the variances 2
ξσ

2
ζσ and 2

vσ  

as well as a data matrix X whose rows correspond with ),1( ,tMtt rxZ =′= . The values 

tΦ associated with tx′  in the third row are set to zero. In the general State Space model 

equation (37), it is possible that all of the system matrices tδ , tΦ and tΩ  have time 

varying elements.  

The typical CAPM regression model is, ttMMt xy ξβα ++= , , tξ ~WN. The yt 

denotes the return on an asset in excess of the risk free rate, and ,M tx  is the excess return 

on a market index. The State Space representation is given 

by ⎟⎟
⎠

⎞
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01 with ( ),x 1,t M tx ′=  and the state vector satisfies 

( )1 ,t t Mα α β α β+
′

= = = . The State Space system matrices are Tt = Iκ, Zt = x t′ , Gt= ξσ and 

Ht = 0 . Estimating the CAPM with time varying coefficients in equation (22) subject to 

random walk evolution are showed in data. Neumann (2002) surveys several estimation 

strategies for time varying parameter models and concludes that the State Space model 

with random walk specifications for the evolution of the time varying parameters 

generally performs very well. The log-likelihood is parameterized using 

( ) ( ) ( )( )′= 222 ln,ln,ln vσσσϕ ςξ so that ( ) ( ) ( )( )′= 321
2 exp,exp,exp ϕϕϕσ . The maximum 

likelihood estimates for ϕ  which estimates of ( ) ( ) ( )( )′= 222 ln,ln,ln vσσσϕ ςξ . These methods 

estimated the standard deviations ξσ ςσ  and vσ  as well as estimated standard errors.  

 



 

 

25 

 

Bayesian CAPM  

The predictive density function reflects estimation risk explicitly since it 

integrates over the posterior distribution, which summarizes the uncertainty about the 

model parameters, updated with the information contained in the observed data. The 

Bayes’ rule, the posterior density ( )p r θ is proportional to the product of the sampling 

density (the likelihood function) and the prior density, ( ) ( )f r pθ θ .  

The decision-making under uncertainty are represented portfolio choice problem. 

Let 1Tr +  denote the vector ( )1N ×  of next-period returns and W  current wealth. The next-

period wealth is ( )1 11T TW W rω+ +′= + in the absence of a risk-free asset. The next-period 

wealth ( )1 11T f TW W r rω+ +′= + + is a risk-free asset with return fr  is present. Letω denote 

the vector of asset allocations. The optimal portfolio decision consists of choosingω that 

maximizes the expected utility of next-period’s wealth, 

( )( ) ( ) ( )1 1max max ,T TE U W U W p r dr
ω ω

θ+ += ∫  subject to feasibility constraints, where θ  is 

the parameter vector of the return distribution and U  is a utility function generally 

characterized by a quadratic or a negative exponential functional form. The distribution 

of returns is ( ) ,p r θ . The ( )( ) ( ) ( )1 1max max ,T TE U W U W p r dr
ω ω

θ+ += ∫  is conditional on 

the unknown parameter vectorθ , which are set θ equal to its estimate ( )rθ
)

based on 

some estimator of the data r  (often the maximum likelihood estimator). Then, the 

optimal allocation given by ( ) ( )( )* arg max E U r r
ω

ω ω θ θ′= =
)

. 

The return generating process for the stock’s excess return 

is , 1, , ,i t tr f t Tα β ε′= + + = K . The tf  is denoted a (K x 1) vector of factor returns (returns 

to benchmark portfolios), and tε is a mean-zero disturbance term. Then, the slopes of the 

regression in i t tr fα β ε′= + + are stock’s sensitivities (betas). In a single factor model 

such as the CAPM, the benchmark portfolio is the market portfolio. The implications for 

portfolio selection of varying prior beliefs about a pricing model are expressed, the prior 

mean ofα , 0α , is set equal to zero. It could have a non-zero value. The prior variance 

ασ  of α  reflects the investor’s degree of confidence in the prior mean a zero value of 
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ασ represents dogmatic belief in the validity of the model; ασ = ∞ suggests complete lack 

of confidence in its pricing power.  

 

Quantile Regression CAPM 

The other conditional quantile functions are estimated by minimizing an 

asymmetrically weighted sum of absolute errors, where the weights are functions of the 

quantile of interest. Thus, Quantile regression is robust to the presence of outliers. Engle 

and Manganelli (1999) and Morillo (2000) used in financial applications. The general 

Quantile regression model, as described by Buchinsky (1998), is i i iy x θ θβ μ′= + or, 

alternatively, ( ) ,
ix

y if s x ds
θβ

θ
′

−∞

= ∫ where θβ is an unknown k × 1 vector of regression 

parameters associated with the thθ  percentile ix  is a k × 1 vector of independent variables, 

iy  is the dependent variable of interest, and iθμ  is an unknown error term. The thθ  

conditional quantile of y  given x  is ( )i i iQuant x xθ θ θμ β′= .Its estimate is given by ˆ
ix θβ′ . 

As θ  increases continuously, the conditional distribution of y  given x  is traced out. 

Although many of the empirical Quantile regression papers assume that the errors are 

independently and identically distributed (i.i.d.), the only necessary assumption 

concerning iθμ  is ( ) 0,i iQuant xθ θμ =  That is, the conditional thθ  quantile of the error 

term is equal to zero. Thus, the Quantile regression method involves allowing the 

marginal effects to change for firms at different points in the conditional distribution by 

estimating θβ  using several different values ofθ , ( )0,1θ ∈  It is in this way that Quantile 

regression allows for parameter heterogeneity across different types of assets. Thus, the 

Quantile regression estimator can be found as the solution to the following minimization 

problem: ( )
: :

arg min 1
i i i i

j i i i
i y x i y x

y x y xθ β
β β

β θ β θ β
′ ′

⎛ ⎞
′ ′= − + − −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑
f p

)
 By minimizing a 

weighted sum of the absolute errors, the weights are symmetric for the median regression 

case ( 0.5θ = ) and asymmetric otherwise. The former implies that the method is 

computationally straightforward while the latter implies 

that ( ) ( )0, ,dn Nθ θ θβ β− ⎯⎯→ Ω
)

The CAPM presents
 ( ), 1 1, 1 ,t i t t iE R τγ β+ +=  as τ < t + 1. 
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The beta-risk is determined over moving samples. The ,i τβ  is the beta-risk obtained from 

a time series regression. , , , ,i i i m iR Rτ τ τ τα β μ= + + . The ,iR τ  and ,mR τ are the excess return 

on the asset and the market portfolio, respectively. 

 

 


