TABLE OF CONTENTS

	Page
Acknowledgement	
iiiAbstract (English)	V
Abstract (Thai)	viii
Table of Contents	xi
List of Tables	xiv
List of Figures	xv
Abbreviations	xviii
Chapter 1 Introduction	6 1
1.1 Principles, theory and rationale	
1.2 Objectives	5
1.3 Hypotheses	5
1.4 Education/application advantage	6
1.5 Research designs, scope and methods	7
Chapter 2 Literature review	10
2.1 Immunopathogenesis of periodontal disease	10
2.2 Human gingival epithelial cells (HGECs)	12
2.3 Human gingival fibroblasts (HGFs)	13
2.4 Matrix metalloproteinases (MMPs)	16 e r v

2.5 Fusobacteriumnucleatum (F. nucleatum)	26
2.6 Phospholipase D (PLD)	29
2.7 Phospholipase A ₂ (PLA ₂)	33
Chapter 3 Materials and Methods	39
3.1 Materials	39
3.2 Cultures of human gingival epithelial cells	40
3.3 Cultures of human gingival fibroblasts	41
3.4 Cell stimulation	41
3.5 Isolation of total RNA and RT-PCR	42
3.6 Real-time PCR	46
3.7 Western blot analyses for cytoplasmic and nuclear e	extracts and culture
supernatants	46
3.8 Gelatin zymography and quantification of gelatinoly	vtic area 48
3.9 Immunofluorescence	49
3.10 Assays for PLD activity	49
3.11 Extraction and thin-layer chromatography of lipit	ids 50
3.12 Statistical analysis	51
Chapter 4 Results	52
4.1 Expression and activity of MMP -9 and MMP-2 in h	uman gingival epithelial

cells534.2 Constitutive expression of MMP-2 in human gingival fibroblasts626262

4.3 Expression of PLD1 and PLD2 mRNA and protein and their activity in hu	ıman
gingival epithelial cells	68
4.4 Involvement of PLD enzymes in induction of MMP-9 expression and	
secretion	75
4.5 Induction of MMP-9 expression and secretion by dioctanoylphosphatidic	acid
	79
4.6 Cytosolic phospholipase $A_2\alpha$ is constitutively expressed, but can be	
transiently activated by phosphorylation	87
4.7 Induction of MMP-9 expression and activity is controlled by $cPLA_2\alpha$	93
Chapter 5 Discussion	97
References	107
Appendices	133
Appendix A Certificate of Ethical Clearance	134
Appendix B Inform consent	135
Appendix C Bacterial crude cell wall preparation	136

Curriculum Vitae 137

LIST OF TABLES

Table	Page
2.1 A family of human MMPs and their substrate specificities	18-19
3.1 The summary of the sequences of primers and the amplicon sizes in	
base pairs (bp)	44
3.2 The summary of amplification conditions for each gene	45

<mark>ລິບສີກສົ້ນກາວົກຍາລັຍເชีຍວໃหນ່</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure	Page		
2.1 The domain structure of MMPs 20			
2.2 A model of proMMP-2 activation by MT1-MMP and TIMP-2 24			
2.3 Phospholipase D-catalyzed reactions	- 31		
2.4 Phospholipase A ₂ on the metabolic pathway of lipid mediator production		34	
2.5 The four paralogs of the Group IV cPLA ₂	36		
2.6 A schematic diagram shows the importance of tyrosine phosphorylation and	d the		
involvement of cPLA ₂ in MMP-9 up-regulation in human monocyte	38		
4.1 Up-regulation of MMP-9 mRNA in HGECs		55	
4.2 Real-time PCR assay of MMP-9 mRNA expression		56	
4.3 MMP-9 protein inductionin HGECs		57	
4.4 Induction of MMP-9 activity in HGECs		58	
4.5 The time-course study shows an early MMP-9 mRNA induction		59	
4.6 Late MMP-9 protein secretion in HGECs	60		
4.7 Late MMP-9 activity in HGECs	61		
4.8 Constitutive expression of MMP-2 in HGFs		64	
4.9 The time-course study demonstrates constitutive MMP-2 mRNA expression	165		
4.10 The expression of MMP-2 protein and its activity in HGFs		66	
4.11 Induction of MMP-2 activity in treated and untreated HGFs		67	
4.12 Expression of PLD1 and PLD2 mRNA in HGECs by Western Blot anal	ysis70		

4.13	Densitometric analyses of mRNA expression for two PLD1 splice variants	and	
PL	LD2 in HGECs	71	
4.14	Expression of PLD1 and PLD2 protein in HGECs	72	
4.15	An assay for PLD activity in HGECs	73	
4.16	Thin-layer chromatogram (TLC) shows the time course study of phosphati	idic acid	
(P.	A) formation in HGECs	5 74	
4.17	Dose-dependent inhibition of MMP-9 mRNA induction by the PLD inhibi	tors,	
inc	cluding ethanol and 1-butanol	76	
4.18	Dose-dependent inhibition of induced MMP-9 activity by the PLD inhibitor	ors 77	
4.19	Densitometric analyses of the gelatinolytic activities of MMP-9	78	
4.20	Up-regulation of MMP-9 mRNA by DOPA in HGECs by RT-PCR analys	is80	
4.21	Up-regulation of MMP-9 protein by DOPA in HGECs by Western blot and	alysis81	
4.22	Up-regulation of MMP-9 activity by DOPA in HGECs by Gelatin zymogr	aphy82	
4.23	Inhibition of MMP-9 mRNA induction by the PAP inhibitor, propranolol	83	
4.24	Inhibition of induced MMP-9 activity by propranolol	84	
4.25	Up-regulation of MMP-9 mRNA by DOG in HGECs by RT–PCR analysis	s 85	
4.26	Up-regulation of MMP-9 activity by DOG in HGECs	86	
4.27	Constitutive mRNA expression of $cPLA_2\alpha$	89	
4.28	Transient activation of cPLA ₂ by phosphorylation	90	
4.29	Nuclear localization of the phosphorylated form of cPLA ₂	91	
4.30	Transient activation of cPLA ₂ by phosphorylation, cytoplasmic and nuclea		
ex	traction	92	
4.31	Involvement of cPLA ₂ α in induction of MMP-9 mRNA expression	94	

- 4.32 Involvement of cPLA₂α in induction of MMP-9 activity
 4.33 The percentage of MMP-9 mRNA inhibition as expressed by the expression of MMP-9 relative to GAPDH
 96
- 5.1 A schematic diagram shows the importance of PLD and cPLA₂ α in MMP-9 up-

regulation in HGECs

106

ີລິບສິກສົ້ນກາວົກຍາລັຍເຮີຍວໃหນ່ Copyright[©] by Chiang Mai University All rights reserved

LIST OF ABBREVIATIONS

AA	Arachidonic acid
A. actinomycetemcomitans	Aggregatibacteractinomycetemcomitans
ARF	ADP ribosylation factor
BM	Basement membrane
BSA	Bovine serum albumin
cAMP	Cyclic adenosine monophosphate
CCD	Charge-coupled device
Con A	Concanavalin A
COX	Cyclooxygenase
DOG	Dioctanoyl glycerol
DOPA	Dioctanoylphosphatidic acid
DMEM	Dulbecco's Modified Eagle Medium
DMSO	Dimethylsulfoxide
DTT	Dithiothreitol
ECM	Extracellular matrix
EDTA	Ethylenediaminetetraacetic acid
FITC	Fluorescein
F. nucleatum	Fusobacteriumnucleatum
GCF	Gingival crevicular fluid
hBD-2	Human β-defensin-2
HGECs	Human gingival epithelial cells

HGFs	Human gingival fibroblasts
IL and	Interleukin
IFN	Interferon
KGM	Keratinocyte growth medium
LPA	Lysophosphatidic acid
LPS	Lipopolysaccharide
MMPs	Matrix metalloproteinases
mRNA	Messenger ribonucleic acid
MT-MMPs	Membrane type- matrix metalloproteinases
PA	Phosphatidic acid
PAF	Platelet activating factor
PBS	Phosphate buffer saline
PBut	Phosphatidylbutanol
PC	Phosphatidylcholine
PEt	Phosphatidylethanol
PGE ₂	Prostaglandin E ₂
P. gingivalis	Porphyromonasgingivalis
PIP ₂	Phosphatidylinositol 4,5-bisphosphate
PIP ₃	Phosphatidylinositol 3,4,5-triphosphate
РКС	Protein kinase C
PLD	Phospholipase D
PLA ₂	Phospholipase A ₂
РМА	Phorbol 12-myristate 13-acetate

xix

RT-PCR	Reverse transcriptase-polymerase chain reaction
SD SD	Standard deviation
SDS	Sodium dodecyl sulfate
sPLA ₂	Secretory phospholipase A ₂
ТВЕ	Tris-borate EDTA
t-butanol	Tertiary-butanol
T. forsythia	Tannerellaforsythensis
TIMPs	Tissue inhibitors of matrix metalloproteinases
TLC	Thin-layer chromatography
TNF	Tumor necrosis factor

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved