TABLE OF CONTENTS

		Page
ACKNOWLED		lii.
ABSTRACT		iv
LIST OF TABI	ES	≪x
LIST OF ILLU	STRATIONS	xiii
CHAPTER !	INTRODUCTION	. 1
	Principles, theories, rationales and hypotheses	1025 N
	The objectives of the study	25
	The hypotheses	2
	Anticipated benefits	3
	Scope of the study	3
	Definitions	3
CHAPTER II	LITERATURE REVIEW	5
	Cephalometric study of class III malocclusion	5
	Dental arch study class III malocclusion	9
CHAPTER III	MATERIALS AND METHODS	11
	Materials	11
	Methods	13
	Statistical analyses	36 ersity
	Reliabilities of the measurements	37

CHAPTER IV	RESULTS	38
	Part 1: Means, standard deviations and two-way analysis	
	of variance of the lateral cephalometric and the	
	model measurements for both class III	
	malocclusion and normal occlusion groups	39
	Part 2: One way analysis of variance of the lateral	
	cephalometric and the model measurements	
	among groups categorized by type of occlusion	
	and gender, following with the Scheffe's multiple	
	comparisons.	59
	Part 3: One way analysis of variance of the lateral	
	cephalometric and the model measurements	
	among the skeletal normal overbite, skeletal	
	deepbite and skeletal openbite in class III	
	malocclusion group, following with the Scheffe's	6
	multiple comparisons.	62
	Part 4: The associations between type of occlusion	
	and craniofacial measurements	67
CHAPTER V	DISCUSSION	73
CHAPTER VI	CONCLUSION	83
BIBLIOGRAPH	IY .	86
APPENDIX A	Reliabilities of the measurements	91
APPENDIX B	Multiple logistic regression analyses for the associations	
	between type of occlusion and the craniofacial	
	measurements	93
CURRICULUM	VITAE rights resei	101/ (-)

LIST OF TABLES

Table	ं भग्नामान	Page
3.1	The distribution of subjects by type of occlusion and gender	12
3.2	Age distribution of the normal occlusion and class III malocclusion	
	groups	13
4.1	Two-way ANOVA of the lateral cephalometric measurements and their	
	means and standard deviations by type of occlusion and gender	49
4.2	Two-way ANOVA of the model measurements and their means and	
	standard deviations by type of occlusion and gender	53
4.3	One-way ANOVA and multiple comparisons for means of the lateral	
	cephalometric measurements among the groups categorized by type	
	of occlusion and gender	54
4.4	One-way ANOVA and multiple comparisons for means of the model	
	measurements among the groups categorized by type of occlusion and	
	gender	58
4.5	One-way ANOVA and multiple comparisons for means of the lateral	
	cephalometric measurements among the skeletal normal overbite,	
	deepbite and openbite in the class III malocclusion group	63
4.6	One-way ANOVA and multiple comparisons for means of the model	
	measurements among the skeletal normal overbite, deepbite and	
	openbite in the class III malocclusion group	65
4.7	The simple logistic regression analyses for the unadjusted associations	
	between type of occlusion and craniofacial measurements	68

4.8	The multiple logistic regression analyses for the association between	
	type of occlusion and craniofacial measurements sequentially adjusted	
	for confounding factors	70
A.1	The Pearson's product moment correlations for the lateral	
	cephalometric measurements and their significant values between the	
	first and the second investigations	91 .
A.2	The Pearson's product moment correlations for the model	
	measurements and their significant values between the first and the	
	second investigations	92
B.1	Multiple logistic regression analyses for the associations between SNB	
	and type of occlusion, controlling for each potential confounding factor	93
B.2	Multiple logistic regression analyses for the associations between	
	ArGoGn and type of occlusion, controlling for each potential	
	confounding factor	94
B.3	Multiple logistic regression analyses for the associations between SN	
	and type of occlusion, controlling for each potential confounding factor	94
B.4	Multiple logistic regression analyses for the associations between SW	
	and type of occlusion, controlling for each potential confounding factor	95
B.5	Multiple logistic regression analyses for the associations between SH	
	and type of occlusion, controlling for each potential confounding factor	95
B.6	Multiple logistic regression analyses for the associations between	
	UAFH and type of occlusion, controlling for each potential confounding	
	factor	96
B.7	Multiple logistic regression analyses for the associations between LPFH	
	and type of occlusion, controlling for each potential confounding factor	96
B.8	Multiple logistic regression analyses for the associations between	
	U1-NA and type of occlusion, controlling for each potential confounding	
	factor	97

B.9	Multiple logistic regression analyses for the associations between	
	U1-SN and type of occlusion, controlling for each potential confounding	
	factor	97
B.10	Multiple logistic regression analyses for the associations between	
	L1-NB and type of occlusion, controlling for each potential confounding	
	factor	98
B.11	Multiple logistic regression analyses for the associations between	
	L1-GoGn and type of occlusion, controlling for each potential	
	confounding factor	98
B.12	Multiple logistic regression analyses for the associations between	
	L1-APg and type of occlusion, controlling for each potential	
	confounding factor	99
B.13	Multiple logistic regression analyses for the associations between	
	nasolabial angle and type of occlusion, controlling for each potential	
	confounding factor	99
B.14	Multiple logistic regression analyses for the associations between	
	H angle and type of occlusion, controlling for each potential	
	confounding factor	100
B.15	Multiple logistic regression analyses for the associations between Upp.	
	lip to E line and type of occlusion, controlling for each potential	
	confounding factor	100

ลิขสิทธิมหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

LIST OF ILLUSTRATIONS

Figure 9881369		Page
3.1	Arch form linear measurements	16
3.2	Skeletal, dental and facial soft tissue landmarks	20
3.3	Lines and planes	22
3.4	Skeletal angular measurements	25
3.5	Dental angular measurements	26
3.6	Facial soft tissue angular measurements	28
3.7	Skeletal linear measurements	31
3.8	Dental linear measurements	32
3.9	Facial soft tissue linear measurements	34

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved