Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement</td>
<td>iii</td>
</tr>
<tr>
<td>Abstract (Thai)</td>
<td>iv</td>
</tr>
<tr>
<td>Abstract (English)</td>
<td>v</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>vi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xi</td>
</tr>
<tr>
<td>Abbreviations and Symbols</td>
<td>xviii</td>
</tr>
</tbody>
</table>

Chapter 1: Introduction

1.1 Background of Vietnam
 1.1.1 The history of Vietnam
 1.1.2 The overview of Vietnamese architecture in the period of the last feudalism (1802-1945) and the French-domination (1858 – 1954)

1.2 Background of the Hue City
 1.2.1 History of the Hue City
 1.2.2 The Hue historical architecture in the period of the last feudalism of Vietnam and French domination

1.3 Background of the Bao Vinh Village

1.4 Problem Statements

1.5 Objectives of the Thesis

1.6 Significances of *Tu Giac* houses

1.7 Hypothesis

1.8 Research Design & Procedure

1.9 Conclusions of Chapter 1

Chapter 2: Literature Review

2.1 The Citadel and the *Ruong* House in Hue City
 2.1.1 The Citadel
 2.1.2 *Ruong* House Map and its commonly application of Architecture in Hue City

2.2 *Tu Giac* Housing Type - The harmonious mixing of Hue traditional and French-influenced architecture

2.3 Literatures on Architectural Conservation of the Hue City
 2.3.1 Science, Technology, Conservation, and Restoration of Architectural Monuments (2003 and 2007)
 2.3.2 Hue Cultural Heritage – The Promotion of *Tu Giac* House Conservation (2002)
 2.3.3 The Guideline for Conserving Hue Traditional House (2003)
 2.3.4 The source of Hue Traditional Houses as references to *Tu Giac* Houses (2004)
2.4 Related Charters, Laws, and Principles of Conservation

2.4.1 Venice Charter (1964)

2.4.2 ICOMOS Charter—Principles for the analysis, conservation and structural restoration of architectural heritage (2003)

2.4.3 Principles for the Preservation of Historic Timber Structures (1999)

2.4.4 Law on Cultural Heritage of Vietnam (2001)

2.4.5 Ruong house Conservation Principles, Hue City—Vietnam (2003)

2.5 Conclusions of Chapter 2

Chapter 3: Methodology—Descriptive Analysis to define the Historical Values and Outstanding Architectural Characteristics of Tu Giac Houses

3.1 The Outstanding Characteristics of the Tu Giac houses (A1—A6)

3.1.1 The Load Bearing Walls

3.1.1.a Three-sided Load Bearing Walls (north, south, east)

3.1.1.b The dependent bracing supports from the timber beams on the missing load-bearing wall

3.1.1.c The non-existence of bracing frame of the inside walls

3.1.1.d The Vo bricks

3.1.1.e The rareness of Load Bearing Walls in Hue’s today Architecture

3.1.2 Two-Storey Buildings

3.1.2.a The rareness in Hue traditional 2-storey architecture

3.1.2.b The low interior spaces below living standards and the short buildings

3.1.3 The high-pitch Timber Stair

3.1.3.a The resembling of Hue traditional multi-storey buildings

3.1.3.b The high pitch and small width staircase to utilize the limited ground floor area

3.1.3.c The rareness high-pitched stairs in today architecture of Hue city
3.1.4 The Timber Floor on the 2nd level
 3.1.4.a The resembling of Hue traditional architecture (Ruong House)
 3.1.4.b The rareness of Kien Kien timber floor in today architecture in Hue City

3.1.5 The Hip Roof
 3.1.5.a The new form of Pyramid Roof existed in the Hue City traditional architecture
 3.1.5.b Two traditional techniques of roofing Liet tiles
 3.1.5.c The traditional roof-composition of three tile-layers
 3.1.5.d The old traditional Liet tiles
 3.1.5.e The usage of traditional mortar for roof ridges

3.1.6 The Entrance Doors using filled-in Horizontal Wooden Panels & The Slat Shutter Windows
 3.1.6.a The traditional characteristic of filled-in horizontal wooden panels door representing the historical street facing houses of the old towns in Central Vietnam
 3.1.6.b The labor intensive but high strength filled-in horizontal wooden panels door
 3.1.6.c The response of the Slat Shutter Windows of the hot and humid region

3.2 A typical Tu Giac House and Its Architectural Elements

3.3 Deteriorations & Destructions of Tu Giac House
 3.3.1 The Load Bearing Walls
 3.3.1.1 Crack
 3.3.1.2 Moss
 3.3.1.3 Fungi and moulds
 3.3.1.4 The flakiness of plaster and finishing
 3.3.1.5 Man-made destructions
 3.3.2 Two-Storey Buildings
 3.3.2.1 The encroachment of additional parts
 3.3.3 The high-pitch Timber Stair
 3.3.3.1 Crack
 3.3.3.2 The aging of wood and fungal and pest attacks
3.3.3.3 The damage of endpoints
3.3.3.4 The movement out of its original position
3.3.3.5 The encroachment on the original narrow access

3.3.4 The Timber Floor on the 2nd level
3.3.4.1 Cracks on floor beams and planks
3.3.4.2 The change of the original timber planks
3.3.4.3 The aging of wood and the fungal and pest attacks
3.3.4.4 The damages of the endpoints of the planks

3.3.5 The Hip Roof
3.3.5.1 Crack of the roof ridges
3.3.5.2 The aging of wood and the fungal and pest attacks
3.3.5.3 Cracks of the timber truss frames
3.3.5.4 Destructions of Liет tiles
3.3.5.5 Man-made destructions

3.3.6 The Entrance Doors using filled-in Horizontal Wooden Panels & The Slat Shutter Windows
3.3.6.1 The aging of wood and fungal and pest attacks

3.4 Conclusions of Chapter 3

Chapter 4: Results – The Creation of Tu Giac Housing Conservation Prototype related to the Deterioration/Destruction of 6 Outstanding Tu Giac House Characteristics

4.1 The Load Bearing Walls
4.1.1 Charter & Principles
4.1.2 Conservation Methods
4.2 Two-Storey Buildings
4.2.1 Charter & Principles
4.2.2 Conservation Methods
4.3 The high-pitch Timber Stair
4.3.1 Charter & Principles
4.3.2 Conservation Methods
4.4 The Timber Floor on the 2nd level
4.4.1 Charter & Principles
4.4.2 Conservation Methods
4.5 The Hip Roof
4.5.1 Charter & Principles
4.5.2 Conservation Methods
4.6 The Entrance Doors by horizontal wooden bars & The Shutter Windows
 4.6.1 Charter & Principles 111
 4.6.2 Conservation Methods 111
4.7 The Tu Giac Housing Conservation Prototype (TGCP) 111
4.8 Conclusions of Chapter 4 158

Chapter 5: The Tu Giac Prototype Applications and Conclusions
 5.1 An Example of Applying Tu Giac Conservation Prototype on Similar Buildings in Similar Climate: A Case Study of Wat-Ket houses, Chiang Mai, Thailand
 5.1.1 The historical background of the Wat-Ket area 159
 5.1.2 The selected Historical Houses to promote Tu Giac Conservation Prototype Applications
 5.1.2.1 The 2-Storey Historical House 162
 5.1.2.2 The 1-Storey Historical House 166
 5.1.3 The Tu Giac Conservation Prototype – Application: TGCP-AP 169
 5.2 Conclusions of Chapter 5 186
 5.3 Conclusions 187
 5.4 Recommendations 189

Bibliography 191
Appendices 194
Curriculum Vitae 203
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Source</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>World map shows the location of Vietnam in the South-East Asia.</td>
<td>Internet</td>
</tr>
<tr>
<td>1.2</td>
<td>The climate zone world map addresses Vietnam in the tropical zone.</td>
<td>Internet</td>
</tr>
<tr>
<td>1.3</td>
<td>The Vietnam contacting the sea becomes the place of transit for international trading sea routes.</td>
<td>Internet</td>
</tr>
<tr>
<td>1.4</td>
<td>The Dong Son bronze representing the Dong Son culture in the 3rd millennium BC.</td>
<td>Internet</td>
</tr>
<tr>
<td>1.5</td>
<td>The distribution of Vietnamese and French architecture in three main cities of Vietnam.</td>
<td>T.B.Tinh, 2004</td>
</tr>
<tr>
<td>1.6</td>
<td>Geographical situation of Hue city showing the relationship of Bao Vinh outwards (12km from the sea by river-transportation) and inwards close to the Citadel (1km) and Hue modern centre (5km).</td>
<td>T.B.Tinh, 2004</td>
</tr>
<tr>
<td>1.7</td>
<td>The location of Bao Vinh Village near the Huong River (the trading route to Hue from the sea-direction at that time) made it become the famous commercial river-port of Hue city in the 19th and early 20th century.</td>
<td>12</td>
</tr>
<tr>
<td>1.8</td>
<td>The Bao Vinh was founded after the demolition of the previous Thanh Ha river-port.</td>
<td>15</td>
</tr>
<tr>
<td>1.9</td>
<td>Bao Vinh village site map shows the 9 Tu Giac houses, the outstanding French-influenced architecture of Hue city, on the riverside to develop trading here previously.</td>
<td>Bao Vinh People Committee, 2007</td>
</tr>
<tr>
<td>1.10</td>
<td>Research Design.</td>
<td>23</td>
</tr>
<tr>
<td>2.1</td>
<td>The Citadel of Nguyen Dynasty (1802-1945) with the outstanding royal buildings.</td>
<td>T.B.Tinh, 2004</td>
</tr>
<tr>
<td>2.2</td>
<td>Some examples of the conservation work on the Citadel.</td>
<td>30</td>
</tr>
<tr>
<td>2.3</td>
<td>The overall map of Hue city addressing the common distribution of Ruong house in Hue City in comparison with the location of Tu Giac houses only in the Bao Vinh Village.</td>
<td>T.B.Tinh, 2004</td>
</tr>
<tr>
<td>2.4</td>
<td>The Section and Façade of a typical 3-compartment Ruong house in Hue City</td>
<td>Hue Heritage House Organization, 2003</td>
</tr>
<tr>
<td>2.5</td>
<td>Some examples of the conservation work on Ruong houses - The conservation techniques for repairing decayed timber elements of Ruong houses.</td>
<td>Hue Heritage House Organization, 2003</td>
</tr>
</tbody>
</table>
2.6 The 9 *Tu Giac* houses on the riverside in Bao Vinh village. House No.5 had been demolished in September of 2007.

2.7 The functional significance of *Tu Giac* House for Bao Vinh is the storage space on the 2nd level when the water tide is high.

2.8 The development of the 2nd floor of *Tu Giac* houses from the wooden ceiling of *Ruong* house and from Vietnamese traditional stilt-houses to store and protect things from moisture on the ground.

2.9 The similarity of sloping roof in Hue traditional architecture and *Tu Giac* houses.

2.10 The *Liet* tiles on *Ruong* houses (left) and on *Tu Giac* houses (right).

2.11 The difference of Hue traditional timber structure and French-influenced load bearing walls.

2.12 The common one-storey *Ruong* house (left) in Hue traditional architecture and the two-storey *Tu Giac* houses as the French influence (right).

2.13 The correlation of Conservation Charters, Laws and Principles into parts of *Tu Giac* House.

3.1 The timeline indicates that the 1-storey buildings were the most common and mostly built in the period 1802 – 1975 (944/1042 houses). The 2-buildings were present since French coming (1885), but having the modest number of 11. During colonial period, the French built about 240 buildings generally for French offices and schools within 2 or 3 stories. 8 *Tu Giac* houses built in the period 1920-1945 are the strong reflection of French-influenced architecture in Hue city.

3.2 The diagram showing the outline of methodology from step A where 6 outstanding architectural characteristics of *Tu Giac* house being determined before feeding into step B and D. the related Charters and Principles of Conservation of step C is fed in to support step B and D. Finally, the ‘conservation technique prototype’ of *Tu Giac* houses is carried out.
3.3 The correlation of acronym characters B, C, and D related to the 6 outstanding characters A_1 through A_6 of Tu Giac houses.

3.4 The same river-street direction of all 8 Tu Giac houses (left) leads to the same direction of three load bearing walls of all Tu Giac houses into the north, south, and east side (right).

3.5 The difference between Tu Giac houses and other French-influenced buildings.

3.6 The graphical analysis of the way of working of the load bearing walls which makes Tu Giac houses become special and dissimilar to common load bearing walls in Hue city.

3.7 The Vo brick unit with bigger sizes than currently common brick unit.

3.8 The percentage 2% of the 2-storey houses in the total Hue traditional houses (Tu Giac and Ruong houses) showing their very rareness in Hue traditional houses.

3.9 The dimensional comparison between Tu Giac houses with normal construction standards of the current street-facing multi-storey houses in Vietnam.

3.10 The similarity of high pitch timber stair among Tu Giac houses and other multi-storey buildings of Hue traditional architecture.

3.11 The dimensional comparison of the stair with the Vietnamese standards.

3.12 The comparison between the normal standard stairs in Vietnamese 2-storey houses and the high pitch stairs of Tu Giac houses shows the reduction 92% of area (A) if using high pitch stair.

3.13 The saving of more than 90% of the small ground-floor spaces by using the high pitch timber stairs in Tu Giac houses.

3.14 The comparison of physical properties of Kien Kien wood (No.1) with other 16 species of wood commonly used in Hue traditional houses.

3.15 The new architecture of the Pyramid of the hip roof.

3.16 The first step of constructing the roof ridges on 4 diagonal timber trusses.

3.17 The composition of the hip roof by Liet tiles.
3.18 The curved tiles are used to cover the intersection of two sloping roof-planes.

3.19 The direction of roofing Liet tiles in the hip roof.

3.20 The composition of 3 Liet tile layers distinguishable from the current 1 tile-layer.

3.21 The differences between Liet tiles and the currently roof-tiles.

3.22 The entrance door using filled-in horizontal wooden panels in some old towns of Central Vietnam.

3.23 The shutter windows with its response to hot and humid climate are used for the 2nd floor spaces of the Tu Giac houses.

3.25 The defining of 8 existing Tu Giac houses which contain or lack of Architectural Elements in comparison with the typical Tu Giac House.

3.26 The comparison of thermal expansion coefficients of materials.

3.27 The cracks on the walls caused by uneven thermal movement between plaster and brick.

3.28 The uneven subsidence of two vertical sections (1 & 2) of a single back-wall causes the vertical crack which tends to separate the wall into 2 vertical parts.

3.29 The subsidence of the whole foundation backwards creates shear forces in walls. It results in the horizontal cracks which are liable to divide the wall into 2 horizontal parts.

3.30 Moss appears on the lower parts of the load bearing walls on the 2nd floor (left side) and on the ground floor (right side).

3.31 Fungi and moulds have grown on the below part of the walls on the ground floor (left side) and on the 2nd floor (right side).

3.32 The flooding in Bao Vinh (in 2008) and the flakiness of the plaster and finishing on the below parts of the load bearing walls caused by flood.
3.33 The flakiness of isolated regions of plaster caused by the development of cracks (left) and by the aging process of mortar (right) has made Vo bricks exposed to outside.

3.34 The flakiness of finishing layers, the calcium-originated whitewash, on the load bearing walls.

3.35 The holes created on the walls for hanging things or objects have been destroying the surfaces of the load bearing walls.

3.36 The additional parts on the 2nd floor conflicting with the hip roofs have destroyed the special scales in façades of the Tu Giac original two-storey fabric, shown clearly in the façade analysis (above) and the real photos (below).

3.37 The cracks on the wood surface of the stairs caused by thermal movement.

3.38 The aging process of wood and fungal attacks on their surfaces.

3.39 The damaged endpoints of the stairs.

3.40 The moving to the other place outside the original structure of Tu Giac house and its stair hole left with the new wooden planks (2 photos on left sides) – the changing into new material of concrete of the timber stair (right side).

3.41 The encroachment of the stair-holes by disordered wooden planks has affected the outstanding characteristic of the timber stair.

3.42 Isostatics are contour lines of tension (dotted lines) and compression (solid lines). The intersection of lines shows shear. The closeness of the contours expresses the intensity of stress. It indicates that tension is greatest at the bottom and compression is biggest on the top of the beam at mid-span. Shear is greatest at the ends. It accounts for the appearance of cracks along the below half of the beam due to excessive tensions.

3.43 The structural cracks along the below half of the floor beams caused by their weakness in withstanding the tension stresses.

3.44 Cracks appeared on the wooden surfaces of the floor beam (left) and planks (right) caused by thermal movement.
3.45 The poor-quality planks used as the substitutes for the original ones with the covering of sticking-plasters on opening slits in between (left).

3.46 Fungal attacks with white flecks on the wooden surfaces of the floor planks.

3.47 Floor beams and planks are attacked by termites.

3.48 Deterioration of the endpoints of the timber floor planks.

3.49 The cracks of the roof ridges on the top.

3.50 Fungal attacks (left and middle) and termite attacks (right) on the elements of the timber frame system of hip roof.

3.51 Cracks caused by thermal movement appear on the horizontal (left) and vertical trusses (right) of the timber frame system.

3.52 Mosses grow on the top surfaces of Liet tiles.

3.53 Mould and fungi on the surfaces of Liet tiles due to high moisture content inside the house.

3.54 Iron plate is used to seal the holes on the roof for water-proof.

3.55 The filling of mortar on the roof to prevent water-penetration.

3.56 Iron nails fixed on timber elements cause rots of them.

3.57 Holes, cracks and rottenness are created on the surfaces of wooden doors and windows by pest and fungal attacks and the aging process of wood.

4.1 A Table showing 15 conservation techniques for Tu Giac houses (Drawing P-01 through P-22).

4.2 The 15 conservation techniques in relation to the 6 Architectural Characteristics (A1 through A6)

4.3 The method DP for the Prevention and Maintenance.

5.1 The location of Wat-Ket addressing the historic houses for applications.

5.2 The site map showing the location of two selected historic houses for applications.

5.3 The selected 2-storey historic house in Wat Ket: VILLA CINI for applications.

5.4 The Tu Giac Conservation Methods applicable for the VILLA CINI house in Wat-Ket area, Chiang Mai, Thailand.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>The selected 1-storey historic house in Wat-Ket: The Gallery for applications.</td>
</tr>
<tr>
<td>5.6</td>
<td>The interior of the selected 1-storey historic house.</td>
</tr>
<tr>
<td>5.7</td>
<td>The Tu Giac Conservation Methods applicable for the The Gallery house in Wat-Ket area, Chiang Mai, Thailand.</td>
</tr>
<tr>
<td>5.8</td>
<td>11 techniques out of 15 Tu Giac conservation techniques are applicable for Wat Ket – VILLA CINI in Chiang Mai, Thailand.</td>
</tr>
<tr>
<td>5.9</td>
<td>9 techniques out of 15 Tu Giac conservation techniques are applicable for Wat Ket – The Gallery in Chiang Mai, Thailand.</td>
</tr>
</tbody>
</table>
Abbreviations and Symbols

Tu Giac: Vietnamese name of the Pyramid.
Original: preceding all others in time or being as first made or performed.
Conservation, Preservation: means all the processes of preventing the loss or damage or other change of original elements.
Authenticity: undisputed credibility.
Prototype: a standard or typical example.