TABLE OF CONTENTS

		age
ACKNO	WLEDGEMENT	vi
ABSTR	CT (IN ENGLISH)	V
ABSTR	v	iii
LIST O	TABLES x	vi
LIST O	FIGURES	viii
ABBRE	VIATIONS	Х
СНАРТ	ER I INTRODUCTION	
1.1 S	atement of problem	1
1.2 L	terature review	6
1	2.1 Cancer	6
	1.2.1.1 Causes of cancer	7
	1.2.1.2 Risk factors of cancer	7
	1.2.1.3 Genetics of cancer	11
Jan	2.2 Leukemia	13
	1.2.2.1 Causes of leukemia	16
	1.2.2.2 Risk factors of leukemogenesis	17
	1.2.2.3 Genes involved in leukemia	210
	1.2.2.4 Classifications of leukemia	22
	1.2.2.4.1 Acute myeloblastic leukemia	23
	1.2.2.4.1 Acute lymphoblastic leukemia	35

	1.2.2.4.3 Chronic myelocytic leukemia	41
	1.2.2.4.4 Chronic lymphocytic leukemia	46
	1.2.3 Wilms' tumor 1 (WT1) gene and Wilms' tumor 1 (WT1) protein	50
	1.2.3.1 Structure and function of WT1 gene and protein	51
	1.2.3.2 Expression of WT1 gene and WT1 protein	55
	in normal cells and tissues	
	1.2.3.3 Expression of <i>WT1</i> gene and WT1 protein in 55	
	malignant tissues	
	1.2.3.4 Expression of WT1 gene and WT1 protein	56
	in normal and malignant hematopoiesis cells	
	1.2.4 Kaffir lime (Citrus hystrix DC.)	58
1.3	Objectives	66
СНА	PTER II MATERIALS AND METHODS	
2.1	Chemicals and reagents	67
2.2	Cells and cell culture condition	67
2.3	Crude kaffir lime leaf fractional extracts	67
2.4	3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium	68
	bromide (MTT) assay	
2.5	Kaffir lime leaf fractional extracts treatments for the studies of	70
	effects of fractional extracts on WT1 gene and WT1 protein expression	
2.6	Preparation of total RNA for gene expression study	70
	2.6.1 Total RNA extraction	70
	2.6.2 Measurement of purity and concentration of total RNA	70
2.7	cDNA synthesis	72

2.8	Effect of crude kaffir lime leaf fractional extracts	73
	on WT1 gene expression	
2.9	Preparation of protein extraction	75
	2.9.1 Nuclear protein extraction	75
	2.9.2 Measurement of protein concentration	76
2.10	Protein determination by SDS-PAGE and Western blot analysis	78
	2.10.1 Sodium dodecyl sulfate polyacrylamide gel electrophoresis	78
	(SDS-PAGE)	
	2.10.2 Western blot analysis for WT1 and GAPDH protein detection	79
2.11	Cytotoxicity of crude kaffir lime leaf fractional extracts on	81
	leukemic cell lines by MTT assay	
2.12	Effect of crude kaffir lime leaf fractional extracts on	81
	WT1 gene expression	
2.13	Effect of crude kaffir lime leaf hexane fractional extract on	82
	WT1 gene expression in K562 cell line a dose dependent manner	
2.14	Effect of crude kaffir lime leaf hexane fractional extract on	82
	WT1 gene expression in K562 cell line in a time dependent manner	
2.15	Effect of crude kaffir lime leaf fractional extracts on	83
	WT1 protein expression	
2.16	Effect of crude kaffir lime leaf hexane fractional extract on	83
	WT1 protein expression in K562 cell line in dose dependent manner	
2.17	Effect of crude kaffir lime leaf hexane fractional extract on	84
	WT1 protein expression in K562 cell line in time dependent manner	

CHAPTER III RESULTS

3.1	Yield of crude kaffir lime leaf fractions extracted by85	
	organic solvents with variant polarities	
3.2	Cytotoxicity of crude kaffir lime leaf fractional extracts on	85
	leukemic cell lines	
3.3	Effect of kaffir lime leaf fractional extracts on	92
	WT1 mRNA levels in leukemic cell lines	
	3.3.1 Effect of crude kaffir lime leaf fractional extracts on	92
	WT1 mRNA levels in K562 cell line	
	3.3.2 Effect of crude kaffir lime leaf fractional extracts on	93
	WT1 mRNA levels in Molt4 cell line	
	3.3.3 Effect of crude kaffir lime leaf fractional extracts on	93
	WT1 mRNA levels in U937 cell line	
	3.3.4 Effect of crude kaffir lime leaf fractional extracts on	94
	WT1 mRNA levels in HL60 cell line	
3.4	Effect of concentrations of crude kaffir lime leaf hexane fractional	100
	extract on WT1 mRNA levels in K562 cell line	
3.5	Effect of different points of time of crude kaffir lime leaf hexane	102
	fractional extract on WT1 gene expression in K562 cell lines	
3.6	Effect of crude kaffir lime leaf fractional extracts on WT1 protein	104
	levels on leukemic cell lines	
	3.6.1 Effect of crude kaffir lime leaf fractional extracts on	104
	WT1 protein levels in K562 cell line	

	3.6.2 Effect of crude kaffir lime leaf fractional extracts on	105
	WT1 protein levels in Molt4 cell line	
3.7	Effect of concentrations of crude kaffir lime leaf hexane fractional	109
	extract on WT1 protein expression in K562 cell line	
3.8	Effect of different points of time of crude kaffir lime leaf hexane	111
	fractional extract on WT1 protein expression in K562 cell line	
СНА	PTER IV DISCUSSION	113
СНА	PTER V CONCLUSION	119
REF	ERENCES	121
APP	ENDICES	148
	Appendix A	149
	Appendix B	153
	Appendix C	156
CUR	RICULUM VITAE	169

LIST OF TABLES

Table	· • • • • • • • • • • • • • • • • • • •	Page
1	Tumor-suppressor genes	14
2	Proto-oncogenes and human tumors: some consistent in criminations	15
3	Survival and relapse risk by cytogenetic abnormalities in AML	26
	patients under 60 years of age	
4	Survival and relapse risk by cytogenetic abnormalities in AML	26
	patients over 60 years of age	
5	The FAB classification of Acute myeloblastic leukemia	31
6	The FAB classification of Acute lymphoblastic leukemia	40
7	Examples of main compounds in essential oil of kaffir lime	65
	by different extraction techniques	
8	Preparation of Bovine serum albumin (BSA) standard solution	77
9	The IC50 values of crude kaffir lime leaf fractional extracts	86
	determined from the plot of percent cytotoxicity	
	on K562, Molt4, U937, and HL60 cell lines	
10	The IC20 values of crude kaffir lime leaf fractional extracts	87
	determined from the plot of percent cytotoxicity	
	on K562, Molt4, U937, and HL60 cell lines	
11	The percentage of WT1 mRNA levels after crude kaffir lime	95
	leaf fractional extracts treatment compared to vehicle control	

xvi

12The percentage of WT1 protein levels after crude kaffir lime106

leaf fractional extract treatments compared to vehicle control

LIST OF FIGURES

Figur	re	Page
1	The Schematic diagram of the WT1 structure at the DNA (exon only),	52
	mRNA and protein level	
2	Kaffir lime tree, leaves, flowers, and fruits	60
3	Standard curve of BSA	77
4	Cytotoxicity of crude kaffir lime leaf fractional extracts on	88
	K562 cell line at various concentrations	
5	Cytotoxicity of crude kaffir lime leaf fractional extracts on	89
	Molt4 cell line at various concentrations	
6	Cytotoxicity of crude kaffir lime leaf fractional extracts on	90
	U937 cell line at various concentrations	
7	Cytotoxicity of crude kaffir lime leaf fractional extracts on	91
	HL60 cell line at various concentrations	
8	The effects of crude kaffir lime leaf fractional extracts on	96
	WT1 mRNA levels in K562 cell line	
9	The effects of crude kaffir lime leaf fractional extracts on	97
	WT1 mRNA levels in Molt4 cell line	
10	The effects of crude kaffir lime leaf fractional extracts on	e ₉₈ 0
	WT1 mRNA levels in U937 cell line	

xviii

11	The effects of crude kaffir lime leaf fractional extracts on	99
	WT1 mRNA levels in HL60 cell line	
12	The effects of concentrations of hexane fractional extract on	101
	WT1 mRNA levels in K562 cell line	
13	The effects of different time points of crude kaffir lime leaf	103
	hexane fractional extract on WT1 mRNA levels in K562 cell line	
14	The effects of crude kaffir lime leaf fractional extracts on	107
	WT1 protein levels in K562 cell line	
15	The effects of crude kaffir lime leaf fractional extracts on	108
	WT1 protein levels in Molt4 cell line	
16	The effect of concentrations of crude kaffir lime leaf hexane	110
	fractional extract on WT1 protein levels in K562 cell line	
17	The effect of different time points of crude kaffir lime leaf hexane	112
	fractional extract on WT1 protein levels in K562 cell line	

ABBREVIATIONS

Percentage % °C **Degree Celsius** microgram μg microlitre μL micromolar μM amino acid aa ALL Acute lymphocytic leukemia Acute myelogenous leukemia AML Acute mixed lineage leukemia AMLL AMML Acute myelomonocytic leukemia Acute promyelocytic leukemia APL base pair bp BSA Bovine serum albumin Cluster of differentiation CD Chronic lymphocytic leukemia CLL CML Chronic myelogenous leukemia Central nervous system CNS CO_2 Carbon dioxide Diethyl pyrocarbonate DEPC DMSO Dimethyl sulfoxide

DNA	Deoxyribonucleic acid
EBV	Epstein-Barr virus
ECL	Enhanced cheniluminescence
e.g.	exempli gratia (for example)
ELISA	Enzyme linked immunosorbent assay
et. al.	et alibi (and others)
FAB	French-American-British
FBS	Fetal bovine serum
g	gram
GAPDH	Glyceraldehyde-3-phosphate
	dehydrogenase
h	hour
HEPES	N-2-hydroxyethylpiperazine-N-2-
	ethanesulfonic acid
HIV	Human immunodeficiency virus
HL-60	Human promyeloid leukemia
HLA	Human leukocyte antigen
HPV	Human papilloma virus
IARC	International Agency for Research on
	Cancer al University
IC20 ghts	Inhibitory concentration at 20% growth
IC50	Inhibitory concentration at 50% growth
i.e.	id est (that is)
IgG	Immunoglobulin G

kb	kilobase
kDa	kilodalton
kg	kilogram
кта 222	Lysine-threonine-serine
L	Liter
LAP	Leukocyte alkaline phosphatase
K562	Human erythroid leukemia
mg	milligram
МНС	Major histocompatibility complex
mg	milligram
MIC	Morphologic-immunologic-cytogenetic
min	minute
mL	milliliter
Molt4	Human lymphoblastic leukemia
МРО	Myeloperoxidase
mRNA	Messenger ribonucleic acid
MTT	3-(4, 5 dimethylthiazole-2yl)-2, 5
	diphenyltetrazolium bromide
NADH	Nicotinamide adenine dinucleotide
imht [©] by Chia	Nanometre
oprights	Optical density
PAS	Periodic acid shift
PBS	Phosphate buffer saline
PCR	Polymerase chain reaction

PLL	Prolymphocytic leukemia
RNA	Ribonucleic acid
rpm	revolution per minute
RPMI 1640 medium	Roswell Park Memorial Institute 1640
	medium
SBB	Sudan Black B
SD	Standard deviation
SDS-PAGE	Sodium dodecyl sulfate-
	polyacrylamide gel electrophoresis
s	second
TdT	Terminal deoxynucleotidyl transferase
TEMED	N, N, N, N, -tetramethylethylenediamine