TABLE OF CONTENTS

ACKNOWLEDGEMENT vi

ABSTRACT (IN ENGLISH) v

ABSTRACT (IN THAI) viii

LIST OF TABLES xvi

LIST OF FIGURES xviii

ABBREVIATIONS xx

CHAPTER I INTRODUCTION

1.1 Statement of problem 1

1.2 Literature review 6

1.2.1 Cancer 6

1.2.1.1 Causes of cancer 7

1.2.1.2 Risk factors of cancer 7

1.2.1.3 Genetics of cancer 11

1.2.2 Leukemia 13

1.2.2.1 Causes of leukemia 16

1.2.2.2 Risk factors of leukemogenesis 17

1.2.2.3 Genes involved in leukemia 21

1.2.2.4 Classifications of leukemia 22

1.2.2.4.1 Acute myeloblastic leukemia 23

1.2.2.4.1 Acute lymphoblastic leukemia 35
1.2.4.3 Chronic myelocytic leukemia 41
1.2.4.4 Chronic lymphocytic leukemia 46
1.2.3 Wilms’ tumor 1 (WT1) gene and Wilms’ tumor 1 (WT1) protein 50
1.2.3.1 Structure and function of WT1 gene and protein 51
1.2.3.2 Expression of WT1 gene and WT1 protein 55
in normal cells and tissues
1.2.3.3 Expression of WT1 gene and WT1 protein in 55
malignant tissues
1.2.3.4 Expression of WT1 gene and WT1 protein 56
in normal and malignant hematopoiesis cells
1.2.4 Kaffir lime (Citrus hystrix DC.) 58
1.3 Objectives 66

CHAPTER II MATERIALS AND METHODS
2.1 Chemicals and reagents 67
2.2 Cells and cell culture condition 67
2.3 Crude kaffir lime leaf fractional extracts 67
2.4 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay 68
2.5 Kaffir lime leaf fractional extracts treatments for the studies of 70
effects of fractional extracts on WT1 gene and WT1 protein expression
2.6 Preparation of total RNA for gene expression study 70
2.6.1 Total RNA extraction 70
2.6.2 Measurement of purity and concentration of total RNA 70
2.7 cDNA synthesis 72
2.8 Effect of crude kaffir lime leaf fractional extracts on WT1 gene expression

2.9 Preparation of protein extraction
 2.9.1 Nuclear protein extraction
 2.9.2 Measurement of protein concentration

2.10 Protein determination by SDS-PAGE and Western blot analysis
 2.10.1 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
 2.10.2 Western blot analysis for WT1 and GAPDH protein detection

2.11 Cytotoxicity of crude kaffir lime leaf fractional extracts on leukemic cell lines by MTT assay

2.12 Effect of crude kaffir lime leaf fractional extracts on WT1 gene expression

2.13 Effect of crude kaffir lime leaf hexane fractional extract on WT1 gene expression in K562 cell line a dose dependent manner

2.14 Effect of crude kaffir lime leaf hexane fractional extract on WT1 gene expression in K562 cell line in a time dependent manner

2.15 Effect of crude kaffir lime leaf fractional extracts on WT1 protein expression

2.16 Effect of crude kaffir lime leaf hexane fractional extract on WT1 protein expression in K562 cell line in dose dependent manner

2.17 Effect of crude kaffir lime leaf hexane fractional extract on WT1 protein expression in K562 cell line in time dependent manner
CHAPTER III RESULTS

3.1 Yield of crude kaffir lime leaf fractions extracted by organic solvents with variant polarities

3.2 Cytotoxicity of crude kaffir lime leaf fractional extracts on leukemic cell lines

3.3 Effect of kaffir lime leaf fractional extracts on WT1 mRNA levels in leukemic cell lines
 3.3.1 Effect of crude kaffir lime leaf fractional extracts on WT1 mRNA levels in K562 cell line
 3.3.2 Effect of crude kaffir lime leaf fractional extracts on WT1 mRNA levels in Molt4 cell line
 3.3.3 Effect of crude kaffir lime leaf fractional extracts on WT1 mRNA levels in U937 cell line
 3.3.4 Effect of crude kaffir lime leaf fractional extracts on WT1 mRNA levels in HL60 cell line

3.4 Effect of concentrations of crude kaffir lime leaf hexane fractional extract on WT1 mRNA levels in K562 cell line

3.5 Effect of different points of time of crude kaffir lime leaf hexane fractional extract on WT1 gene expression in K562 cell lines

3.6 Effect of crude kaffir lime leaf fractional extracts on WT1 protein levels on leukemic cell lines
 3.6.1 Effect of crude kaffir lime leaf fractional extracts on WT1 protein levels in K562 cell line
3.6.2 Effect of crude kaffir lime leaf fractional extracts on WT1 protein levels in Molt4 cell line

3.7 Effect of concentrations of crude kaffir lime leaf hexane fractional extract on WT1 protein expression in K562 cell line

3.8 Effect of different points of time of crude kaffir lime leaf hexane fractional extract on WT1 protein expression in K562 cell line

CHAPTER IV DISCUSSION

CHAPTER V CONCLUSION

REFERENCES

APPENDICES

Appendix A

Appendix B

Appendix C

CURRICULUM VITAE
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>26</td>
</tr>
<tr>
<td>5</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td>65</td>
</tr>
<tr>
<td>8</td>
<td>77</td>
</tr>
<tr>
<td>9</td>
<td>86</td>
</tr>
<tr>
<td>10</td>
<td>87</td>
</tr>
<tr>
<td>11</td>
<td>95</td>
</tr>
</tbody>
</table>

1. Tumor-suppressor genes
2. Proto-oncogenes and human tumors: some consistent in criminations
3. Survival and relapse risk by cytogenetic abnormalities in AML patients under 60 years of age
4. Survival and relapse risk by cytogenetic abnormalities in AML patients over 60 years of age
5. The FAB classification of Acute myeloblastic leukemia
6. The FAB classification of Acute lymphoblastic leukemia
7. Examples of main compounds in essential oil of kaffir lime by different extraction techniques
8. Preparation of Bovine serum albumin (BSA) standard solution
9. The IC50 values of crude kaffir lime leaf fractional extracts determined from the plot of percent cytotoxicity on K562, Molt4, U937, and HL60 cell lines
10. The IC20 values of crude kaffir lime leaf fractional extracts determined from the plot of percent cytotoxicity on K562, Molt4, U937, and HL60 cell lines
11. The percentage of WT1 mRNA levels after crude kaffir lime leaf fractional extracts treatment compared to vehicle control
The percentage of WT1 protein levels after crude kaffir lime leaf fractional extract treatments compared to vehicle control.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The Schematic diagram of the WT1 structure at the DNA (exon only), mRNA and protein level</td>
<td>52</td>
</tr>
<tr>
<td>2</td>
<td>Kaffir lime tree, leaves, flowers, and fruits</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>Standard curve of BSA</td>
<td>77</td>
</tr>
<tr>
<td>4</td>
<td>Cytotoxicity of crude kaffir lime leaf fractional extracts on K562 cell line at various concentrations</td>
<td>88</td>
</tr>
<tr>
<td>5</td>
<td>Cytotoxicity of crude kaffir lime leaf fractional extracts on Molt4 cell line at various concentrations</td>
<td>89</td>
</tr>
<tr>
<td>6</td>
<td>Cytotoxicity of crude kaffir lime leaf fractional extracts on U937 cell line at various concentrations</td>
<td>90</td>
</tr>
<tr>
<td>7</td>
<td>Cytotoxicity of crude kaffir lime leaf fractional extracts on HL60 cell line at various concentrations</td>
<td>91</td>
</tr>
<tr>
<td>8</td>
<td>The effects of crude kaffir lime leaf fractional extracts on WT1 mRNA levels in K562 cell line</td>
<td>96</td>
</tr>
<tr>
<td>9</td>
<td>The effects of crude kaffir lime leaf fractional extracts on WT1 mRNA levels in Molt4 cell line</td>
<td>97</td>
</tr>
<tr>
<td>10</td>
<td>The effects of crude kaffir lime leaf fractional extracts on WT1 mRNA levels in U937 cell line</td>
<td>98</td>
</tr>
</tbody>
</table>
11 The effects of crude kaffir lime leaf fractional extracts on WT1 mRNA levels in HL60 cell line

12 The effects of concentrations of hexane fractional extract on WT1 mRNA levels in K562 cell line

13 The effects of different time points of crude kaffir lime leaf hexane fractional extract on WT1 mRNA levels in K562 cell line

14 The effects of crude kaffir lime leaf fractional extracts on WT1 protein levels in K562 cell line

15 The effects of crude kaffir lime leaf fractional extracts on WT1 protein levels in Molt4 cell line

16 The effect of concentrations of crude kaffir lime leaf hexane fractional extract on WT1 protein levels in K562 cell line

17 The effect of different time points of crude kaffir lime leaf hexane fractional extract on WT1 protein levels in K562 cell line
ABBREVIATIONS

% Percentage
°C Degree Celsius
µg microgram
µL microlitre
µM micromolar
aa amino acid
ALL Acute lymphocytic leukemia
AML Acute myelogenous leukemia
AMLL Acute mixed lineage leukemia
AMML Acute myelomonocytic leukemia
APL Acute promyelocytic leukemia
bp base pair
BSA Bovine serum albumin
CD Cluster of differentiation
CLL Chronic lymphocytic leukemia
CML Chronic myelogenous leukemia
CNS Central nervous system
CO₂ Carbon dioxide
DEPC Diethyl pyrocarbonate
DMSO Dimethyl sulfoxide
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>EBV</td>
<td>Epstein-Barr virus</td>
</tr>
<tr>
<td>ECL</td>
<td>Enhanced cheniluminescence</td>
</tr>
<tr>
<td>e.g.</td>
<td>exempli gratia (for example)</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme linked immunosorbent assay</td>
</tr>
<tr>
<td>et. al.</td>
<td>et alibi (and others)</td>
</tr>
<tr>
<td>FAB</td>
<td>French-American-British</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal bovine serum</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Glyceraldehyde-3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>HEPES</td>
<td>N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid</td>
</tr>
<tr>
<td>HIV</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>HL-60</td>
<td>Human promyeloid leukemia</td>
</tr>
<tr>
<td>HLA</td>
<td>Human leukocyte antigen</td>
</tr>
<tr>
<td>HPV</td>
<td>Human papilloma virus</td>
</tr>
<tr>
<td>IARC</td>
<td>International Agency for Research on Cancer</td>
</tr>
<tr>
<td>IC20</td>
<td>Inhibitory concentration at 20% growth</td>
</tr>
<tr>
<td>IC50</td>
<td>Inhibitory concentration at 50% growth</td>
</tr>
<tr>
<td>i.e.</td>
<td>id est (that is)</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunoglobulin G</td>
</tr>
</tbody>
</table>
kb kilobase
kDa kilodalton
kg kilogram
KTS Lysine-threonine-serine
L Liter
LAP Leukocyte alkaline phosphatase
K562 Human erythroid leukemia
mg milligram
MHC Major histocompatibility complex
mg milligram
MIC Morphologic-immunologic-cytogenetic
min minute
mL milliliter
Molt4 Human lymphoblastic leukemia
MPO Myeloperoxidase
mRNA Messenger ribonucleic acid
MTT 3-(4, 5 dimethylthiazole-2yl)-2, 5 diphenytetrazolium bromide
NADH Nicotinamide adenine dinucleotide
nm Nanometre
OD Optical density
PAS Periodic acid shift
PBS Phosphate buffer saline
PCR Polymerase chain reaction
PLL Prolymphocytic leukemia
RNA Ribonucleic acid
rpm revolution per minute
RPMI 1640 medium Roswell Park Memorial Institute 1640 medium
SBB Sudan Black B
SD Standard deviation
SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel electrophoresis
s second
TdT Terminal deoxynucleotidyl transferase
TEMED N, N, N, N, -tetramethylethylenediamine