TABLE OF CONTENTS

	PAGE	
ACKNOWLEDGEMENTS	iii	
ABSTRACT (ENGLISH)	vii	
ABSTRACT (THAI)	ix	
ABSTRACT (FRENCH)	xi	
LIST OF TABLES	xix	
LIST OF FIGURES	XX	
ABBREVIATIONS AND SYMBOLS	xxiii	
CHAPTER I INTRODUCTION 1		
1.1 Statement and significance of the problem	1	
1.2 Literature review	3	
1.2.1 Gene therapy for the HIV/AIDS treatment	3	
1.2.1.1 HIV/AIDS treatment	3	
1.2.1.2 Gene therapy for the HIV infection and AIDS	4	
1.2.2 Role of Gag polyprotein on HIV assembly	6	
1.2.3 Alternative non-antibody scaffolds for novel binding	S 9	
functions SPESE IV		
1.2.3.1 Alternative non-scaffolds	9	
1.2.3.2 Evaluation of repeat proteins	12	
1.2.3.3 Ankyrin repeat proteins	14	

1.2.4 In vitro evolution of protein		
1.2.4.1 Introduction	17	
1.2.4.2 Primary sequence analysis	19	
1.2.4.3 Diversification of molecules	21	
1.2.4.4 Selection of desired functional proteins	22	
1.2.5 Recombinant protein expression	29	
1.2.5.1 Systems for recombinant protein expression	29	
1.2.5.2 Recombinant protein expression in <i>E. coli</i>	32	
1.2.5.3 Recombinant protein expression in yeast	34	
1.2.5.4 Recombinant protein expression in insect cells	35	
via baculovirus expression system		
1.2.5.5 Recombinant protein expression in mammalian cell	36	
1.2.6 Phage display technology	37	
1.2.6.1 Introduction	37	
1.2.6.2 Biology and structure of M13 filamentous	38	
bacteriophage		
1.2.6.3 Filamentous phage-based vector systems	45	
1.2.6.4 Applications of phage display	48	
1.3 Objectives	50	
CHAPTER II MATERIALS AND MEDTHODS	e 51	
2.1 Chemicals and equipment	51	
2.2 <i>E. coli</i> strains and vectors	51	
2.3 Cell culture	52	

	2.4 Construction of artificial ankyrin repeat protein library		53
	2.4.1 Sequence analysis and design of oligonucleotide fragments		53
	for library construction		
		2.4.2 Preparation of DNA cassettes encoding a single internal	58
		repeat for library construction	
		2.4.3 Generation of intermediate vector	60
		2.4.4 Library construction	60
		2.4.5 Characterization of the library	63
	2.5	Preparation of phage-displayed artificial ankyrin repeat protein	64
		library	
	2.6	Phage titration	65
 2.7 Phage filtration using <i>Strep</i>-tactin® coated magnetic beads 2.8 Production of H₆MA-CA and H₆-CA recombinant protein by 		66	
		66	
baculovirus expression system			
2.8.1 Vector construction		66	
	2.8.2 Production of recombinant H_6MA -CA and H_6 -CA in		67
		Sf9 cells	
	2.9	Selection of specific binders from the constructed artificial ankyrin	72
	repeat protein library		
	2.9.1 Selection procedure		72
2.9.2 Screening of specific binding clones		73	
	2.10	Production of soluble ankyrin binders	74
		2.10.1 Construction of pQE-30 expressing soluble ankyrin binders	74
		2.10.2 Expression and purification of soluble ankyrin binders	75

2.10.3 Biotinylation of soluble ankyrin binders and monoclonal	75	
antibodies		
2.11 Production of monoclonal antibodies	76	
2.11.1 Mouse immunization	76	
2.11.2 Hybridoma technique	76	
2.11.3 Single cell cloning by limiting dilution	77	
2.11.4 Characterization of monoclonal antibodies by indirect	78	
ELISA and Western immunoblotting		
2.11.4.1 Indirect ELISA	78	
2.11.4.2 Western immunoblotting	78	
2.11.5 Purification of monoclonal antibodies	79	
2.12 Evaluation of binding activity of ankyrin binders		
2.12.1 Assessment the reactivity of ankyrin binders by indirect	80	
ELISA techniques		
2.12.2 Epitope identification of ankyrin binders by Western	81	
immunoblotting and indirect ELISA		
2.12.3 Epitope mapping of ankyrin binders by sandwich ELISA	82	
2.12.4 Evaluation of binding activity using isothermal titration	82	
calorimetry (ITC)		
2.13 Interference of HIV protease activity by ELISA-based method		
2.13.1 Production of recombinant HIV-1 protease in E. coli	82	
2.13.2 Evaluation of HIV-1 interfering effect of ankyrin binders	83	
by ELISA		
2.13.2.1 Preparation of the nickel pre-treated plate	83	

2.13.2.2 Detection process	84	
2.14 Generation of stable cell line expressing selected ankyrin binders		
2.14.1 Construction of pCEP4 vector harboring ankyrin binders		
2.14.2 Establishment of stable cell line expressing MA-CA binders	s 87	
2.14.3 Assessment of intracellular distribution of ankyrin binders	87	
by fluorescence microscopy		
2.14.4 Flow cytometric analysis for expression of GFP-fused	88	
ankyrin binder		
2.15 Intracellular function of ankyrin protein on viral assembly	88	
2.15.1 Challenging Sup-T1 stable lines by HIV-1 _{NL4-3} viral	88	
particles		
2.15.2 Monitoring the viral production by measuring level of p24		
CHAPTER III RESULTS	90	
3.1 Design of artificial ankyrin repeat motif for library construction	90	
3.2 Library construction	98	
3.3 Characterization of constructed library	100	
3.4 Production and purification of recombinant H ₆ MA-CA	104	
and H ₆ -CA		
3.5 Isolation of H_6MA -CA and A3 binders by phage selection	107	
3.6 Generation of monoclonal antibodies against H ₆ MA-CA	113	
3.7 Binding activity of selected ankyrin binders	116	
3.8 Hindrance of HIV-1 maturation by interfering protease activity	124	

CHAPTER IV DISCUSSION	130
CHAPTER V CONCLUSION	138
CHAPTER VI RÉSUMÉ	140
REFERENCES	144
APPENDICES	158
APPENDIX A List of the chemicals and instruments	159
APPENDIX B List of cell lines and microorganisms	167
APPENDIX C List of antibodies and conjugated antibodies	168
APPENDIX D List of enzymes	169
APPENDIX E Reagent preparations	170
APPENDIX F Presentations and publications	178

CURRICULUM VITAE

180

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

xviii

LIST OF TABLES

Table		Page
1.1	Web services and databases for primary sequence analysis	20
1.2	The different selection systems employed in combinatorial protein	23
	engineering	
1.3	Applications of expression systems in common used	30
1.4	The characterization of expression systems in common used	31
1.5	The list of commonly used tag for fusion protein production	33
1.6	The list of phage coat proteins	41
2.1	Oligonucleotide for the artificial ankyrin repeat protein library	55
	construction	
2.2	The sequences of primers for generation of pCEP4 expressing ankyrin	86
	binders	
3.1	Proportion of amino acid coding from mixed bases at each randomized	97
	positions	

ลขสทรมหาวทยาลยเชยงเหม Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure		Page
1.1	Inhibitory agents used in HIV hematopoietic cell gene therapy trials	5
1.2	The organization of Gag polyprotein	7
1.3	HIV assembly and release	8
1.4	The different protein backbones used as scaffolds for the generation	11
	of protein-binding agents	
1.5	The architecture of several repeat proteins	13
1.6	Characteristic of ankyrin repeat (ANK) protein architecture	15
1.7	Ankyrin repeat proteins with high-resolution structures in the PDB	16
1.8	Schematic of molecular evolution of proteins	
1.9	In vitro display technologies	26
1.10	General features of a protein complementary assay (PCA)	28
1.11	Structure of a filamentous bacteriophage	40
1.12	Model of filamentous phage infection	43
1.13	M13 bacteriophage assembly	44
1.14	Types of vector systems for peptide and protein display base on	IS 47
	Filamentous phages	
2.1	The generation of circularized template	54
2.2	Schematic of the TempliPhi amplification process	59

2.3	Process for library generation	62
2.4	Recombination between Bac-N-Blue TM DNA and	70
	pBlueBac-H ₆ MA-CA transfer vector	
2.5	Formation of blue plaques	71
3.1	Sequence analysis of natural ankyrin repeats	93
3.2	Optimized structures of designed consensus	94
3.3	Model structure of internal repeat	95
3.4	Amino acid distribution of natural ankyrin sequence s	96
3.5	Agarose gel electrophoresis indicated the complete digestion of	99
	homopolymer into monomer	
3.6	Characterization of constructed ankyrin library	102
3.7	Enrichment of coding clones by phage filtration using Strep-tactin®	103
	Coated magnetic beads	
3.8	Isolation of recombinant BV-H ₆ MA-CA	105
3.9	Purification of recombinant H ₆ MA-CA protein using Ni ²⁺ -NTA-	106
	agarose column	
3.10	Phage ELISA for screening of the H ₆ MA-CA binders	110
3.11	Distribution of repeat number of selected H ₆ MA-CA binders	111
3.12	Sequence analyses of H ₆ MA-CA binders	112
3.13	The reactivity of polyclonal antibodies in immunized mice serum	S 114
3.14	Characterization of antibody reactivity	e ¹¹⁵
3.15	Production and biotinylation of purified ankyrin binders	119
3.16	Binding activities of biotinylated ankyrin binders	120
3.17	Specific reactivity of ankyrin binders	121

3.18	Epitope localization of selected binders	122
3.19	Affinity and specificity of selected ankyrin binder	123
3.20	Interference of HIV-1 protease activity by selected ankyrin binders	125
3.21	Schematic representation of two constructed vectors for stable	128
	lines generation	

3.22 Interference of HIV assembly by ankyrin binder 1D4 in different 129 cellular compartments

xxii

ABBREVIATIONS AND SYMBOLS

%	percent
°C	degrees Celsius
Ab	antibody (-ies)
bp	base pair (s)
BSA	bovine serum albumin
cfu	colony forming unit (s)
E. coli	Escherichia coli
ELISA	enzyme-linked immunosorbent assay
hr	hour (s)
HCI	hydrochloric acid
HRP	horseradish peroxidase
kb	kilo base pair (s)
kDa	kilodaltons
М	molar (s)
mAb	monoclonal antibody (-ies)
mg	milligram (s)
min	minute (s) Mai University
m righ	milliliter (s)
MOI	multiplicity of infection
NaCl	sodium chloride
NaN ₃	sodium azide

xxiii

NaOH	sodium hydroxide
ng	nanogram (s)
OD	optical density
PBS	phosphate buffered saline
PCR	polymerase chain reaction
PEG 8000	polyethylene glycol 8000
pfu	plaque forming unit (s)
rpm	revolutions per minute
RT	room temperature (25°C)
ТМВ	3,3',5,5'-tetramethylbenzidine
U	unit (s)
μg	microgram (s)
μΙ	microliter (s)
n	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

xxiv