TABLE OF CONTENTS

	فرامات المان ا	Page
ACKNOWLE	EDGEMENT	iii
ABSTRACT	(ENGLISH)	V
ABSTRACT	(THAI)	ix
TABLE OF C	CONTENTS	xiii
LIST OF TAI	BLES	xvi
LIST OF FIG	GURES	xix
ABBREVIAT	TIONS AND SYMBOLS	xxi
CHAPTER I	INTRODUCTION	1
	1.1 Principle, Theory, and Rationale	1
	1.2 Cadmium polluted area in Thailand	6
	1.3 Cadmium pollution in Japan and Itai-itai disease	8
	1.4 Cadmium pollution in other countries	10
	1.5 Environmental cadmium distribution to human	12
	1.6 Cadmium toxicity	13
	1.7 Cellular toxicity of cadmium	17
	1.8 Cadmium osteotoxicity	20
	1.9 Cadmium and calcium metabolism impairment	21
	1.10 Cadmium and anemia	23
	1.11 Cadmium and biomarkers	26
	1.12 Hypothesis	31

	1.13 Study Objectives	32
CHAPER II	MATERIALS AND METHODS	33
	2.1 Instruments	33
	2.2 Chemicals	33
	2.3 Study area and sample population	35
	2.4 Collection of urinary and blood samples	38
	2.5 Determination of blood and urinary cadmium	39
	2.6 Analysis of renal dysfunction markers	40
	2.7 Determination of fractional excretion of calcium	44
	2.8 Determination of bone markers	44
	2.9 Determination of anemic biomarkers	46
	2.10 Expression of the human fetal osteoblast genes after	47
	cadmium chloride treatment	
	2.11 Data analysis	51
CHAPTER II	II RESULTS	53
	3.1 Population characteristics	53
	3.2 Cadmium exposure	54
	3.3 Exposure to cadmium, occupation and smoking status	54
	adjusted by age 3.4 Correlation of blood and urinary cadmium	55
	3.5 Renal dysfunction biomarkers	55
	3.6 Cadmium exposure VS renal and bone markers	56
	3.7 Dose-response relationship between cadmium exposure and	56
	renal and bone markers	

3.8. Gender dependent correlation between cadmium exposure,	57
renal dysfunction and bone metabolism impairment	
3.9 Anemia prevalence among cadmium polluted area inhabitants	59
3.10 Effect of cadmium on hFOB 1.19 mRNA expression	61
CHAPTER IV DISCUSSION AND CONCLUSIONS	91
REFERENCES	107
APPENDICES	132
Appendix A	133
Appendix B	136
Appendix C	139
CIRRICULUM VITAE	148

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Ta	Table		
1	Real time PCR primer sequence for osteoblast gene expression	51	
	determination		
2	Characteristics of 700 surveyed inhabitants living in	63	
	a cadmium polluted area		
3	Number of the study subjects classified by gender, occupation,	64	
	smoking status and underlying diseases		
4	Mean ± standard deviation of blood cadmium distribution according	65	
	to age groups in both men and women		
5	Mean ± standard deviation of urinary cadmium distribution according	66	
	to age groups in both men and women		
6	Relation between blood cadmium of the study subjects and	67	
	three types of classified occupations and smoking status adjusted by age		
7	Relation between <u>urinary cadmium</u> of the study subjects and	68	
	three types of classified occupations and smoking status adjusted by age		
8	Comparison of age, body mass index, blood cadmium, urinary cadmium	70	
	and renal dysfunction markers between men and women of all		
	study subjects living in cadmium polluted area		

9	Comparisons of age, body mass index, urinary cadmium,	71
	blood cadmium, renal and bone markers between men and women	
	aged 50 years and over, living in cadmium polluted area	
10	Dose-response analysis of the concentrations of renal markers	72
	and bone markers to four levels of cadmium in 156 men	
	aged \geq 50 years.	
11	Dose-response analysis of the concentrations of renal markers	73
	and bone markers to four levels of cadmium in 256 women	
	aged \geq 50 years.	
12	Gender dependent correlations between urinary cadmium,	74
	bone markers and renal tubular dysfunction markers in	
	the study subjects aged \geq 50 years	
13	Multivariate regression analyses of age, sex, <u>blood cadmium</u>	77
	and renal tubular dysfunction markers on bone markers among	
	cadmium polluted area inhabitants aged ≥ 50 years	
14	Multivariate regression analyses of age, sex, <u>urinary cadmium</u>	78
	and renal tubular dysfunction markers on bone markers	
	among cadmium polluted area inhabitants aged ≥ 50 years	
15	Comparison of blood and urinary cadmium concentrations	79
	to blood indices in the study subjects	
16	Mean and standard deviation of blood indices of the anemic subjects ,	80
	both genders, in four groups of the subjects classified by concentrations	
	of urinary cadmium (U-Cd) from <2 to > 10 μg/g Cr	

17	Correlation between hemoglobin & hematocrit, and	81
	cadmium concentrations in blood and urine, renal markers, age	
	and body mass index in all of the study subjects living	
	in the cadmium polluted area	
18	Relation between anemia prevalence in 5 age groups	83
	among the study subjects	
19	Relation between anemia prevalence in men and	84
	urinary cadmium levels and renal dysfunction markers	
20	Relation between anemia prevalence in women and	85
	urinary cadmium levels, and renal dysfunction markers	
21	Relation between anemia prevalence and β ₂ -MG, NAG levels	86
	after adjusted by means age and urinary cadmium	
22	Relation between anemia prevalence and cystatin C levels	87
	after adjusted by means age and urinary cadmium	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Fig	Figure	
1	Cadmium polluted area in Mae Sot District, Tak Province	36
2	The reaction of β_2 -MG in the enzyme immunoassay	41
3	The reaction of NAG in the colorimetric assay.	42
4	Reaction of serum cystatin C in the latex particle enhanced	43
	turbidimetric immunoassay	
5	Histograms of blood cadmium concentrations distribution according	65
	to age groups in men and women who live in the cadmium polluted area.	
6	Histograms of urinary cadmium concentrations distribution according	66
	to age groups in men and women who live the cadmium polluted area.	
7	Correlation between blood and urinary cadmium in men and women	69
	who live in cadmium polluted area	
8	The relationship between bone resorption and urinary cadmium among	75
	men and women whose age \geq 50 years from cadmium polluted area.	
9	The relationship between bone resorption and impaired Ca	76
	reabsorption capacity among men and women	
10	Correlation between urinary cadmium and hemoglobin in men	82
	and women	

11	Morphology of hFOB cells treated with CdCl ₂ concentrations	88
	2.5, 5, 10. 20 and 40 μM compared to the untreated cells	
12	Cytotoxicity of cadmium chloride in hFOB cells after 24 h	89
	treatment using MTT assay	
13	Correlation of %hFOB cell viability between MTT and	89
	trypan blue exclusion assays after treatment with CdCl ₂ solution	
14	Expression of osteocalcin, typeI collagen and OPG genes of the	90
	hFOB cell after 24 hr treatment with CdCl ₂	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

AAS Atomic absorption spectrometer

α₁ –MG Alpha1 -microglobulin

β₂-MG Beta2 -microglobulin

°C Degree of Celsius

μg Microgram

μM Micromolar

AAP Alanine aminopeptidase

Ab Antibody
Ag Antigen

Alb Albumin

ALP Alkaline phosphatase

ANOVA Analysis of variance

ATSDR Agency for Toxic Substances and Disease Registry

B-Cd Blood cadmium

BCE Bone collagen equivalent

BMI Body mass index

C.I. Confident interval

Ca Calcium

Calcium ion

Cd Cadmium

CdCl₂ Cadmium chloride

cDNA Complementary deoxyribonucleic acid

Col1A1 Collagen 1A1

Cr Creatinine

Ct Cycle threshold

Cu Copper

xxii

Dex Dexamethasone

dl Deciliter

DMEM Dulbecco's Modified Eagle Medium

DPD Deoxypyridinoline

EIA Enzyme immunoassay

Fe Iron

FECa Fractional excretion of calcium

g Gran

GAPDH Glyceraldehyde 3-phosphate dehydrogenase

HCl Hydrogen chloride

HClO₄ Hydrogen perchlorate

Het Hematocrit

hFOB 1.19 Human fetal osteoblast like cell line 1.19

Hgb Hemoglobin
HNO₃ Nitric acid

IPCS International Programme on Chemical Safety

kg Kilogram

1 Liter

LC Lethal concentration

LYZ Lysozyme M Molar

MCH Mean corpuscular hemoglobin

MCHC Mean corpuscular hemoglobin concentration

MCV Mean corpuscular volume

mg Milligram

min Minute

ml Milliliter

mRNA Messenger RNA

MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide

NS Not significant

Na Sodium

xxiii

NAG N-acetyl-β-D-glucosaminidase

NaOH Sodium hydroxide

nm Nanometer

nmol Nanomolar

NTx N-terminal crosslink of type I collagen

OC Osteocalcin

OPG Osteoprotegerin

P Phosphorus

Pb Lead

PCD Pollution Control Department

PCR Polymerase chain reaction

pH Power of hydronium ion

RANKL Receptor Activator for Nuclear Factor κ B Ligand

RBC Red blood cell count

RBP Retinol-binding protein

RDW Red blood cell distribution width

RNA Ribonucleic acid

RT-real time PCR Reverse transcriptase real time polymerase

chain reaction

S.D. Standard deviation

S.E. Standard error

S-Ca Serum calcium

Std Standard

U-Ca Urinary calcium

U-Cd Urinary cadmium

UV Ultraviolet

VIS

WHO World Health Organization

Zn Zinc