Thesis Title The Intracellular Targets and Anticancer Mechanisms of Siamois® Polyphenols

Author Mr. Wipob Suttana

Degree Doctor of Philosophy (Biomedical Science)

Thesis Advisory Committee Assoc. Prof. Dr. Samlee Mankhetkorn Chairperson
Asst. Prof. Dr. Suchart Kothan Member
Dr. Nathupakorn Dechsupa Member

ABSTRACT

Polyphenols found in vegetables, fruits, and some beverages (e.g. tea, wine) were also demonstrated to exert a wide range of biological activities including antioxidant, anti-carcinogenic, anti-proliferative, and anti-inflammatory actions. The aims of this study are to determine the intracellular targets and anticancer mechanisms of Siamois® polyphenols in cancer cells compared with normal myoblast cells. Physicochemical properties of these polyphenols were characterized. The NFκB-dependent apoptotic induction and anti-inflammatory action in cancer cells of Siamois® polyphenols were described. The results demonstrated that the Siamois®, Siamois 1, and Siamois 2 were enriched with polyphenols (45% powder in weight) and the main compounds are anthocyanidins, flavonoids, phenolic acids, catechin, epicatechin,
proanthocyanidins. These polyphenols efficiently inhibited cell growth and provoked an induction of apoptosis against 4 cancer cell lines (K562, K562/Adr, GLC4 and GLC4/Adr) with similar efficacy. In contrast, these polyphenols stimulated growth of normal myoblasts. The intracellular targets responsible for the anticancer activity should be the mitochondria, as can be demonstrated by using living cell imaging. Moreover, the Siamois® polyphenols suppressed NFκB-regulated genes involved in inflammation, metastasis, angiogenesis, and drug resistance that provide therapeutic benefits by suppression of cancer-promoting inflammatory cytokines and factors involved in cancer progression. Therefore, this study elucidated crucial information concerning intracellular targets and anticancer mechanisms of polyphenols and novel strategies of anticancer drug discovery.
ชื่อเรื่องวิทยานิพนธ์
เป้าหมายภายในขอเสนอและกลไกการออกฤทธิ์ต้านมะเร็งของสาร
ไฟฟ้าจากไวน์ขาวสมบัติ

ผู้ช่วยน
นาทวัฒ ศุทธะ

ปริญญา
วิทยาศาสตรดุษฎีบัณฑิต (วิทยาศาสตรชีววิทยาแผนก)

คณะวิทยาศาสตร์วิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์

ประกาศ

สารไฟฟ้าออกซิเจนในสัตว์ ผลไม้ และเครื่องดื่มบางชนิด เช่น ชา ไวน์ สามารถแสดงฤทธิ์ใน
การด้านอนุมูลอิสระ ด้านภัยคุกคามเรื้อง ด้านการแก่งต่างของเซลล์มะเร็ง และด้านการยับยั้ง
วัตถุประสงค์ของการศึกษาในการหาเป้าหมายซึ่งเชื้อสายเซลล์และกลไกการออกฤทธิ์ต้านมะเร็งของสาร
ไฟฟ้าออกซิเจนจากไวน์ขาวสมบัติในเซลล์มะเร็งเมเปิลที่พบบกพร่องที่สูงเกินกว่าค่าที่ยอมรับ
โดย ท้าทายศึกษาคุณสมบัติเชิงภยันxic ของสารไฟฟ้าออกซิเจนจากไวน์ขาวสมบัติ และขยายผลในในการจัด
นารนารนารนารนาราหารสาคมทางจุลทรรศน์ที่เกี่ยวข้องกับการริบบริษัทไวน์เทอร์เองใช้เทคนิคการคัดคัดปั๊ม (NFKB) ใน
เซลล์มะเร็งและฤทธิ์ในการด้านการยับยั้ง จากผลการศึกษาพบว่าสารสำคัด Siamois², Siamois 1, and
Siamois 2 มีสารไฟฟ้าออกซิเจนส่วนประกอบประมาณ 45% ของน้ำหนักเซลล์โดยมีสารประกอบที่
สำคัญได้แก่ เอนซิเมนทร์ (anthocyanidins) พาโวโนอิเด (flavonoids) กรดฟีนอล (phenolic acids) ธาตุฟีนอล (catechin) อีพิเทนทร์ (epicatechin) และโปรตีนโฟแทน (proanthocyanidins)
สารไฟฟ้าออกซิเจนส่วนประกอบยั้งการเจริญของเซลล์มะเร็งเพียงแค่ 4 ชนิด ได้แก่ K562, K562/Adr,
GLC4 และ GLC4/Adr อย่างประสิทธิภาพใกล้เคียงกัน แต่สารไฟฟ้าออกซิเจนนี้กระตุ้นการเจริญของ
เซลล์ก้านเนื้อด้วยอิสระ โดยเป้าหมายการออกฤทธิ์ต้านมะเร็งในเซลล์น่าจะเป็นโดยผลกระทบ
ซึ่งสามารถส่งผลโดยการกระทำที่มีชีวิต นอกจากนี้สารไฟฟ้าออกซิเจนจากไวน์ขาวสมบัติ
สามารถยับยั้งการเจริญของเซลล์ที่ถูกควบคุมโดยอิสระคิดปั๊มและเกี่ยวกับการยับยั้ง การ
แพร่กระจายของเซลล์มะเร็ง การเกิดหลอดเลือดใหม่ และการดื้อยา ซึ่งมีประโยชน์ในการรักษา
โรคมะเร็งโดยการยึดถือการระดุดังการยั้งการอักเสบที่หลั่งมาจากเซลล์มะเร็งและการลูกลามของโรคมะเร็ง
ดังนั้นการศึกษาไปได้ข้อข้อมูลที่สำคัญเกี่ยวกับเป้าหมายภายในเซลล์และกลไกการออกฤทธิ์ต้าน
มะเร็งของสารโพลีฟิโนอลและกลูกชาติใหม่ในการค้นหาข้อเท็จจริง

Copyright © by Chiang Mai University
All rights reserved