TABLE OF CONTENTS

CONTENT	PAGE
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
TABLE OF CONTENTS	xi
LIST OF FIGURES	xvi
ABBREVIATIONS AND SYMBOLS	xviii
CHAPTER I: INTRODUCTION	
1.1 Statement and significance of the problem	
1.2 Literature reviews	4
1.2.1 Structure and function of hemoglobin	6 4
1.2.2 Hemoglobin synthesis	12
1.2.3 Developmental change in hemoglobin	15
1.2.4 Thalassemia	
1.2.4.1 Introduction of thalassemia syndromes	18
1.2.4.2 β-thalassemia	21
1.2.4.3 Laboratory diagnosis of thalassemia	24
1.2.4.4 Screening techniques	27
1.2.5 Alpha Hemoglobin Stabilizing Protein	32
1.2.6 Principle of the production of BCCP fusion protein	1 ₃₇ e
1.2.7 Monoclonal antibody production	39
1.3 Objectives	44

CHAPTER II: MATERIALS AND METHODS

2.1 Chemicals and instruments used in this study are	45
shown in Appendix A	
2.2 Preparation of immunogen	
2.2.1 Preparation of recombinant hAHSP	45
2.2.2 Preparation of recombinant hAHSP-BCCP	45
2.2.2.1 hAHSP gene amplification	45
2.2.2.2 Restriction enzyme digestion of amplified	46
hAHSP	
2.2.2.3 Preparation of pAK400CB plasmid	46
cloning sites	
2.2.2.4 Construction of plasmid containing	47
hAHSP-BCCP gene	
2.2.3 Introduction of plasmid DNA pAK400CB-hAHSP	47
into the bacterial cells	
2.2.3.1 Bacterial cell transformation	47
2.2.3.2 Purification of plasmid DNA by alkaline	48
lysis method	
2.2.3.3 Characterization of recombinant clones	48
2.2.3.4 Expression of biotinylated hAHSP-BCCP	49
fusion protein Reserve	
2.2.3.5 Total bacteria protein extraction	50
2.2.4 Detection of hAHSP and biotinylated hAHSP-BCCP	50
fusion protein	

2.2.4.1 Detection of nAHSP recombinant protein	50
by indirect ELISA	
2.2.4.2 Detection of biotinylated hAHSP-BCCP	51
protein by indirect ELISA	
2.2.4.3 Detection of hAHSP and hAHSP-BCCP	51
protein by Western blot analysis	
2.2.4.4 Magnetic bead sorting	52
2.3 Production of monoclonal antibodies	
2.3.1 Mouse immunization	53
2.3.2 Determination of antibody response in the	53
immunized mouse	
2.3.3 Hybridoma production	53
2.3.4 Screening of hybridomas producing mAb	54
against hAHSP by ELISA	
2.3.5 Single cell cloning by limiting dilution	54
2.4 Characterizations of anti-hAHSP monoclonal antibodies	
2.4.1 Characterization of anti-hAHSP mAbs by ELISA	55
2.4.2 Characterization of hAHSP mAbs by	55
Copyright Western blotting Mai Uni	

CHAPTER III: RESULTS

3.1 Construction of plasmid expression vector encoding	56
hAHSP-BCCP fusion protein	
3.1.1 Amplification of hAHSP coding region	56
3.2 Production of biotinylated hAHSP-BCCP fusion protein	62
3.2.1 Detection of biotinylated hAHSP-BCCP	62
fusion protein by indirect ELISA	
3.2.2 Analysis of hAHSP-BCCP fusion protein	63
by Western immunoblotting	
3.3 Purification of biotinylated hAHSP-BCCP fusion protein	67
by streptavidin-coated magnetic beads	
3.4 Mouse immunization	69
3.4.1 Antibody responses in BALB/c mice after	69
immunization with hAHSP-BCCP beads	
3.4.2 Antibody responses in BALB/c mice after	71
immunizations with recombinant protein hAHSP	
3.5 Production of monoclonal antibody against hAHSP	73
3.6 Characterization of the generated mAbs MT-hAHSP1	74
and MT-hAHSP2 Chiang Mai Uni	
3.6.1 Characterization of the generated hAHSP mAbs by ELISA	74 V e
3.6.2 Characterization of the generated hAHSP	76
mAbs by Western immunoblotting	

CHAPTER IV: DISCUSSION AND CONCLUSION	78
REFERENCES	87
APPENDIX	97
Appendix A List of the chemicals and instrument used in this study	98
Appendix B List of antibodies used in this study	101
Appendix C List of Microorganism used in this study	102
Appendix D List of instruments used in this study	103
Appendix E Reagents and buffers preparation	104
CIRRICULUM VITAE	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

FI	GURE		PAGE
	1.1	Molecular structure of hemoglobin	6
	1.2	The chromosome of α and β -globin genes family	8
	1.3	Hemoglobin oxygen dissociation curve	11
	1.4	Heme molecule	13
	1.5	Hemoglobin synthesis in the developing red cell	14
	1.6	Developemental change in globin chains and production	17
		organs from fetus to adult	
	1.7	Incidence of thalassemia syndrome worldwide	20
	1.8	Simplified flow chart for screening of thalassemia carrier	s 26
	1.9	Hemoglobin formations with and without AHSP	34
	1.10	The structure of alpha-Hemoglobin Stabilizing	35
		Protein (AHSP)	
	1.11	Monoclonal antibodies production	42
	1.12	Metabolic pathways of DNA synthesis	43
	3.1	Agarose gel electrophoresis of amplified PCR product	58
	3.2	Agarose gel electrophoresis revealed PCR product	59
		of hAHSP	
	3.3	Schematic illustration represents the pAK400CB-	60
		hAHSP vector	
	3.4	Analysis of plasmid vector purified from E.coli Nova	61
		Blue strain harboring pAK400CB-hAHSP	

3.5	Detection of biotinylated hAHSP-BCCP fusion protein	64
	from various strains of E. coli by indirect ELISA	
3.6	Analysis of biotinylated hAHSP-BCCP fusion protein	65
	by Western immunoblotting	
3.7	Analysis of biotinylated CD147-BCCP fusion protein	66
	by Western immunoblotting	
3.8	Flow cytometric analysis of captured streptavidin	68
	magnetic beads	
3.9	Antibody responses from two mice "A and B"	70
	immunized with hAHSP-BCCP beads	
3.10	Antibody responses from a mouse immunized with hAHSP	72
3.11	Characterization of mAbs against hAHSP	75
3.12	SDS-PAGE and Western blot analysis	77
	of produced mAb hAHSP	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

 α Alpha

β Beta

δ Delta

ε Epsilon

γ Gamma

Alanine gamma

Glycine gamma

ψ Pseudogene

θ Theta

Zeta

Ab Antibody

ACC Acetyl-CoA carboxylase

AHSP Alpha hemoglobin stabilizing protein

BCCP Biotin carboxyl carrier protein

BHS Holoenzyme synthetase

BSA Bovine serum albumin

°C Degree Celsius

CBC Complete blood count

CD Cluster of Differentiation

cDNA Complementary deoxyribonucleic acid

DMSO Dimethyl sulfoxide

DNA Deoxyribonucleic acid

EDTA Ethylenediaminetetracetic acid

ELISA Enzyme-linked immunosorbent assay

EtBr Ethidium bromide

FCS Fetal calf serum

FITC Fluorescein isothiocyanate

g Gram

GST Glutathione-S-transferase

HAT Hypoxanthine aminopterine and thymidine

HbA Hemoglobin A

HbA₂ Hemoglobin A₂

HbF Hemoglobin F

HGPRT Hypoxanthine guanine phosphoribosyltransferase

hr Hour

HRP Horseradish peroxidase

IgA Immunoglobulin A

IgG Immunoglobulin G

IgG2b Immunoglobulin G2b

IgM Immunoglobulin M

Igs Immunoglobulins

IMDM Iscove's Modified Dulbecco's Medium

kb Kilobase

kDa Kilo Dalton

L Litre

M Molarity

mAb Monoclonal antibody

MBP Maltose-binding protein

mg Milligram

min Minute

ml Milliliter

mM Millimolar

NaN₃ Sodium azide

nm Nanometer

O.D. Optical Density

PBS Phosphate buffer saline

% Percent

pH Power of hydrogen

rpm Round per minute

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel

electrophoresis

μg Microgram

ul Microliter

ลิขสิทธิมหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved