TABLE OF CONTENTS

	Page
ACKNOWLEDEGMENT	iii
ABSTRACT	iv
LIST OF TABLES	xii
LIST OF ILLUSTRATIONS	xiii
ABBREVIATIONS	xv
I. INTRODUCTION	1 1 1 1
II. LITERATURE REVIEWS	5
1. Overview of cancer	5
2. Colorectal cancer	5
2.1 Genetic alterations during the progression of colorectal cancer	6
2.2 Risk factors involved in colorectal cancer development	8
3. Liver cancer	9
3.1 Risk factors involved in liver cancer development	9
3.2 Liver cancer in Thailand	10
4. Lung cancer	IIVersity
4.1 Histologic types of lung cancer	rveni
4.2 Risk factors involved in lung cancer development	13
5. Staging of colorectal, liver, and lung cancer	14
6. Tumor markers currently used for diagnosis of cancer	18
6.1 Tumor markers for colorectal cancer	18

		6.2 Tumor markers for liver cancer	19
		6.3 Tumor markers for lung cancer	19
	7.	Cancer metastasis	20
	8.	Angiogenesis and angiogenic factors	21
	9.	Vascular endothelial growth factor (VEGF):	
		The most studied angiogenic factor	23
	10.	The VEGF receptors	26
		10.1 VEGFR-1	26
		10.2 VEGFR-2	26
		10.3 NEUROPILIN-1	27
		10.4 VEGFR-3	27
	11.	Other VEGF-related genes	28
		11.1 VEGF-B	28
		11.2 VEGF-C	28
		11.3 VEGF-D	29
		11.4 VEGF-E	30
	12.	Regulation of VEGF gene expression	30
		12.1 Oxygen tension	30
		12.2 Hormones and cytokines	31
	13.	Expression pattern of VEGF in cancer	32
	14.	Diagnostic and prognostic value of circulating	
		VEGF for malignant disease	32
III.	. М	ATERIALS AND METHODS	34
	1.	Specimen collection and storage	34
	2.	Preparation of tissue homogenate	34
	3.	Estimation of protein concentration in serum and tissue homogenate by	
		the bicinchoninic acid (BCA) assay kit	35
		3.1 Preparation of BSA (bovine serum albumin) standard	35

		3.2 Preparation of BCA working reagent	36
		3.3 Protein measurement by using microplate	36
	4.	Assessment of tissue VEGF and circulating	
		VEGF protein expression by Western blotting	36
		4.1 Separation of protein by SDS-PAGE	37
		4.1.1 Preparation of running gel (10% and 15%)	38
		4.1.2 Preparation of stacking gel (4%)	38
		4.1.3 Preparation of the sample and electrophoresis procedure	38
		4.2 Transfer of separated proteins	39
		4.3 Immunodetection	39
		4.4 Visualization of detected protein band	40
		4.5 Quantification of proteins on polyacrylamide gels	
		by staining with coomassie blue	40
	5.	Principle of Capture ELISA	41
		5.1 Optimization of Capture ELISA	41
		5.2 Capture ELISA procedure	44
		5.3 Determination of the percentage of recovery of capture ELISA	45
	6.	Statisrical analysis	46
IV.	RE	SULTS	47
	1.	Quality controls of the study	47
		1.1 Controls for protein quantification	47
		1.2 Control for protein loading	47
		1.3 Control of VEGF protein	51
		1.4 Control of total VEGF determination by ELISA	51
	2.	Study population of the patients	53
	3.	Expression pattern of VEGF isoform	54
		3.1 Expression pattern of VEGF isoform in tumor tissue	54

3.2 Expression pattern of VEGF isoform in serum of cancer patients	
in comparison to serum of normal healthy volunteers	58
3.3 VEGF isoform expression in relation to classification	
of pathological features	58
4. Determination of total VEGF by ELISA	62
4.1 Optimization of the ELISA for the determination of total VEGF	62
4.2 Determination of specificity of the ELISA	65
4.3 Level of total VEGF protein in tumor tissues	
in comparison to normal tissues	66
4.4 Level of total VEGF protein in serum of	
cancer patients in comparison to healthy volunteers	66
V. DISCUSSION VI. CONCLUSION REFERENCES	687273
APPENDICES	96
Appendix A: List of the chemicals and materials.	97
Appendix B: List of instruments.	99
Appendix C: Reagents and buffers preparation.	100
CURRICULUM VITAE	106

LIST OF TABLES

Table	Page
1 Staging system for colorectal cancer.	15
2 Staging system for liver cancer	16
3 Staging system for lung cancer	17
4 The preparations of serum sample for determination	
of the percentage of recovery	45
5 Clinical characteristics of the cancer patients	54
6 Summary of VEGF isoform expression in different types of tumor tissues	57
7 Summary of the relationship between VEGF isoform	
expression and pathological features in colorectal cancers	59
8 Summary of the relationship between VEGF isoform	•
expression and pathological features in hepatocellular carcinoma	. 60
9 Summary of the relationship between VEGF isoform	
expression and pathological features in non-small cell lung cancers	61
10 The percentage of the recovery of standard VEGF	
from serum assessed by ELISA	65
11 Level of total VEGF protein in tumor tissues	
in comparison to normal tissues	66
12 Level of VEGF protein in serum of cancer patients	
in comparison to healthy volunteers	67

LIST OF ILLUSTRATIONS

Fig	gure	age
1	Genetic model for the progression of colorectal cancer.	6
2	Schematic diagram showing important domains different	
	alternatively spliced variants of human VEGF.	25
3	Checkerboard of assay optimization utilize mouse anti-VEGF	
	monoclonal Ab as a capture Ab and goat anti-VEGF polyclonal Ab	
	as a detection Ab.	43
4	Checkerboard of assay optimization use goat anti-VEGF polyclonal Ab	
	as a capture Ab and mouse anti-VEGF monoclonal Ab as a detection Ab.	44
5	An example of standard curve obtained from diluting BSA to	
	various concentrations and detected by BCA protein assay.	48
6	The quality control chart of protein concentration of the control	
	homogenate determined by BCA assay.	49
7	Western blots show unequality of β -actin protein and GAPDH protein	
	in tumor and normal tissues.	50
8	An example of standard graph obtained from diluting	
	recombinant VEGF to various concentrations and detected by ELISA assay.	52
9	The quality control chart of VEGF concentration of the control serum	
	determined by Capture ELISA assay.	53
10a	Protein expression VEGF isoform in patients with colorectal cancer	
	assessed by Western blotting in tumor tissues and corresponding	
	adjacent normal tissues	55

Fig	gure	Page
	0.0318134.63	
1 0 b	Protein expression VEGF isoform in patients with liver cancer	
	assessed by Western blotting in tumor tissues and corresponding	
	adjacent normal tissues.	56
10c	Protein expression VEGF isoform in patients with lung cancer	
	assessed by Western blotting in tumor tissues and corresponding	
	adjacent normal tissues.	57
11	Western blot analysis of VEGF in serum from cancer patient	
	compare to normal serum.	58
12	Optimization of capture ELISA using mouse anti-monoclonal Ab	
	as capture Ab and goat anti-polyclonal Ab as detection Ab	63
13	Optimization of capture ELISA using goat anti-polyclonal Ab	
	as capture Ab and mouse anti-monoclonal Ab as detection Ab	64

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS

% percentage

°C degree celsius

 α alpha

μg microgram

APS Ammonium persulfate

BCA bicinchoninic acid

 β beta

BSA bovine serum albumin

cm centimetre

CV coefficient of variation

ddH₂O deionized water

dH₂O distilled water

DNA deoxyribonucleic acid

ECL enhanced chemiluminescence

ELISA Enzyme-linked immunosorbent assay

gm gram

HCl hydrochloric acid

hr hour

HRP horseradish peroxidase

H₂SO₄ sulfuric acid

IgG immunoglobulin G

Kb kilobase pair

kDa kilodalton

KCl potassium chloride

KH₂PO₄ potassium dihydrogen phosphate

Μ molar

mg milligram

minute min

ml millilitre

mRNA messenger ribonucleic acid

ng nanogram

nm nanometre

Na₂HPO₄ di-sodium hydrogen phosphate

OCV optimal condition variance

PBS phosphate buffer saline

PBS-T phosphate buffer saline-Tween

picrogram pg

R recovery

RCV-K routine condition variances known values

RTroom temperature SD

standard deviation

SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis

TMB 3,3,5,5 tetramethylbenzindine

TMED N, N, N', N'-tetramethylethylenediamine

Vascular endothelial growth factor