TABLE OF CONTENTS

	Page
ACKNOWLEDGMENT	iii
ABSTRACT	iv
TABLE OF CONTENTS	viii
LIST OF TABLES	xiv
LIST OF ILLUSTRATIONS	xv
ABBREVIATIONS	xxi
CHAPTER 1 INTRODUCTION	1
1.1 Background information	1
1.2 Objectives of the research	3
CHAPTER 2 LITERATURE REVIEW	5
2.1 Bifidobacteria in starter culture	5
2.1.1 Morphology of bifidobacteria	6
2.1.2 Respiratory of bifidobacteria	7
2.1.3 Optimum temperature and pH of bifidobacteria	7
2.1.4 Composition of cell wall of bifidobacteria	8
2.1.5 Starch adhesion, carbohydrate utilization, metabolites, and	
enzymatic system of bifidobacteria	8
2.1.5.1 Starch adhesion of bifidobacteria	8
2.1.5.2 Carbohydrate utilization of bifidobacteria	9
2.1.5.3 Metabolites of bifidobacteria	10
2.1.5.4 Enzymatic system of bifidobacteria	10
2.1.6 Detection method, culture media, and culture parameters of	
bifidobacteria	11
2.1.6.1 Detection methods	11
2.1.6.2 Culture media	11

		2.1.6.3 Sample plating	12
		2.1.6.4 Culture parameters	13
2.2	Use	of bifidobacteria in fermented milk products	14
2.3	Facto	ors affecting viability of bifidobacteria in bio-products	16
	2.3.1	Yogurt acidity	16
	2.3.2	Co-culture and species interaction	17
	2.3.3	Dissolved oxygen	18
2.4	Techi	nology to improve viability of bifidobacteria in food products	18
	2.4.1	Cells immobilization technology	19
		2.4.1.1 Adsorption	19
		2.4.1.2 Encapsulation	20
	2.4.2	Techniques for examination or determination of immobilized	
		cells	22
2.5	Edibl	e films and coatings	23
	2.5.1	Film components	23
		2.5.1.1 Polysaccharides-based edible films	23
		2.5.1.2 Proteins-based edible films	24
		2.5.1.3 Lipids-based edible films	25
		2.5.1.4 Composite films	25
	2.5.2	Film formation	26
		2.5.2.1 Coacervation	26
		2.5.2.2 Solvent removal	27
		2.5.2.3 Solidification of melt by cooling	27
	2.5.3	Application of film to food products	27
		2.5.3.1 Dipping	27
		2.5.3.2 Spraying	28
	2.5.4	Selected coating materials	28
		2.5.4.1 Caseinates	28
		2.5.4.2 Beeswax	29

		2.5.4.3 Fatty acids and monoglycerides	30
2.6	Freez	zing technology	31
	2.6.1	Effect of freezing on food structure	31
	2.6.2	Selected freezing methods	32
		2.6.2.1 Cooled-air freezing or chamber freezing	32
		2.6.2.2 Cryogenic freezing	32
2.7	Freez	e drying	33
2.8	Tapic	oca starch and tapioca starch beads	36
	2.8.1	Tapioca starch	36
		2.8.1.1 Chemical composition of tapioca starch	36
		2.8.1.2 Physicochemical properties of tapioca starch	37
	2.8.2	Tapioca starch beads	37
СНА	PTER	3 MATERIALS AND METHODS	38
3.1	Mater	rials	38
3.2	Chem	nicals and media	39
3.3	Equip	oments	40
3.4	Media	a, simulated gastrointestinal fluids, and film solution preparation	41
3.5	Resea	rch designs and methods	43
	3.5.1	Initial moisture content	43
	3.5.2	Physical properties of QF- and SF-FDTB	43
		3.5.2.1 Determination of bead diameter	43
		3.5.2.2 Determination of the total bulk volume	43
		3.5.2.3 Determination of porosity	43
		3.5.2.4 Determination of specific surface area	44
		3.5.2.5 Determination of adsorption capacity	44
		3.5.2.6 Determination of adsorption behavior	45
		3.5.2.7 Determination of water-holding capacity	45
		3.5.2.8 Determination of gel strength	45
		3.5.2.9 Determination of microstructure	45

	3.5.2.10 Statistical evaluation of physical properties of QF- and	
	SF-FDTB	46
3.5.3	Culture conditions of Bifidobacterium spp.	46
3.5.4	Immobilization technique	46
3.5.5	Cell enumeration	47
3.5.6	Effects of immobilized time and freezing methods of FDTB	
	on the viability of immobilized B. infantis	47
3.5.7	Effects of commercial brands and freezing methods of FDTB	
	on the immobilization of Bifidobacterium spp.	48
3.5.8	Effects of freezing methods of FDTB and bifidobacterial cells	
	concentrations on the viability of immobilized Bifidobacterium sp	p.
	stored at 4-5°C for 16-18 h	48
3.5.9	Effect of freeze-drying on the viability of immobilized	
	Bifidobacterium spp.	49
3.5.10	Effect of coating materials on the viability of dried-	
	immobilized Bifidobacterium spp.	49
3.5.11	Survival of free cells, non-coated, and coated-dried-	
	immobilized Bifidobacterium spp. in simulated gastrointestinal	
	fluids without enzyme at 37°C for 310 min	50
3.5.12	Effects of coating materials and storage time on the survival	
	of non-coated and coated-immobilized Bifidobacterium spp. in	
	pasteurized yogurt, stored at 4-5°C for 4 wk and in simulated	
	gastrointestinal fluids without enzyme at 37°C for 310 min	51
3.5.13	Effect of storage time on the survival of free cells and non-	
	coated-immobilized Bifidobacterium spp.in sterilized yogurt,	
	stored at 4-5°C for 4 wk and in simulated gastrointestinal fluids	
	without enzyme at 37°C for 310 min	52
3.5.14	Statistical evaluation	53

CHA	APTER 4 RESULTS AND DISSCUSSION	54
4.1	Moisture content and physical properties of QF- and SF-FDTB	54
4.2	Effects of immobilization time and freezing methods of Special Saco	®
	FDTB on the viability of immobilized B. infantis	69
4.3	Effects of commercial brands and freezing methods of FDTB on the	
	immobilization of Bifidobacterium spp.	70
4.4	Effects of freezing methods of FDTB and bifidobacterial cells	
	concentrations on the viability of immobilized Bifidobacterium spp.	
	stored at 4-5°C for 16-18 h	74
4.5	Effect of freeze-drying on the viability of immobilized	
	Bifidobacterium spp.	79
	4,5.1 Scanning electron micrograph of freeze-dried-immobilized	
	Bifidobacterium spp.	80
4.6	Effect of coating materials on the viability of dried-immobilized	
	Bifidobacterium spp.	83
	4.6.1 Scanning electron micrograph of coated-immobilized beads	85
4.7	Survival of free cells, non-coated, and coated-dried-immobilized	
	Bifidobacterium spp. in simulated gastrointestinal fluids without	
	enzyme at 37°C for 310 min	87
	4.7.1 Scanning electron micrograph of coated-immobilized beads	90
4.8	Effects of coating materials and storage time on the survival of non-	
	coated and coated-immobilized Bifidobacterium spp. in Special Sacoo®	
	SF-FDTB during storage in pasteurized yogurt at 4-5°C for 4 wk and	
	in simulated gastrointestinal fluids at 37°C for 310 min	92
	4.8.1 Scanning electron micrograph of non-coated immobilized	
	bead after storage in pasteurized yogurt at 4-5°C for 4 wk	100

4.8.2 Survival of non-coated and coated-immobilized B. longum,	
B. bifidum, and B. infantis after incubated in simulated	
gastrointestinal fluids without enzyme at 37°C for 310 min	103
4.9 Survival of free bifidobacterial cells and non-coated immobilized	
Bifidobacterium spp. during storage in sterilized yogurt at 4-5°C	
for 4 wk and in simulated gastrointestinal fluids without enzyme	
at 37°C for 310 min	104
4.9.1 Survival of free bifidobacterial cells and non-coated immobilized	
Bifidobacterium spp. after incubated in simulated	
gastrointestinal fluids without enzyme at 37°C for 310 min	107
CHAPTER 5 CONCLUSION AND RECOMMENDATION	109
REFERENCES	112
APPENDIX A	122
APPENDIX B	128
CURRICULUM VITAE	132

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Tab	le	Page
1	Analysis of variance of effects of commercial brands and freezing	
	methods on the diameter and bulk volume of 100-FDTB.	59
2	Analysis of variance of effects of commercial brands and freezing	
	methods on the granular volume and porosity of FDTB.	62
3	Analysis of variance of effects of commercial brands and freezing	
	methods of FDTB on the percentage of immobilization of B. longum	,
	B. bifidum, and B. infantis, stored at 4-5°C for 16-18 h.	72
4	Analysis of variance of effects of cell concentrations and freezing	
	methods of FDTB on the viability of immobilized B. longum,	
	B. bifidum, and B. infantis, kept at 4-5°C for 16-18 h.	77
5	Analysis of variance of the effects of coating materials and storage	
	time on the survival of non-coated and coated-immobilized	
	Bifidobacterium spp. in Special Sacoo® SF-FDTB during storage	
	in pasteurized yogurt at 4-5°C for 4 wk.	95
6	Analysis of variance of the effects of coating materials and storage	
	time on the pH of the pasteurized yogurt containing non-coated	
	and coated-immobilized Bifidobacterium spp., stored at 4-5°C.	100

LIST OF ILLUSTRATIONS

Figu	ure	Page
1	Effect of freezing on plant tissues: (a) slow freezing; (b) fast	
	freezing (Cited in Fellow, 2000).	31
2	Moisture content of gelatinized TSB from Golden Chef®,	
	Special Sacoo®, and Thaiworld.®	57
3	Effects of commercial brands and freezing methods on the weight	
	of 100-FDTB.	57
4	Effects of commercial brands and freezing methods on the moisture	
	content and water-holding capacity of 100-FDTB.	58
5	Effects of commercial brands and freezing methods on the diameter	
	and bulk volume of 100-FDTB.	58
6	Effect of freezing methods on the bulk volume of 100-FDTB.	59
7	Effect of commercial brands on the bulk volume of 100-FDTB.	59
8	Scanning electron micrograph of the outer surface of	
	SF-FDTB at magnification x 300.	60
9	Scanning electron micrograph of the outer surface of	
	QF-FDTB at magnification x 270.	60
10	Effects of commercial brands and freezing methods on the true	
	volume of FDTB.	61
11	Effects of commercial brands and freezing methods on the granular	
	volume of FDTB.	61
12	Effects of commercial brands and freezing methods on the porosity	
	of FDTB.	62
13	Effect of freezing methods on the granular volume of FDTB.	63
14	Effect of commercial brands on the granular volume of FDTB.	63

15	Effect of freezing methods on the porosity of FDTB.	63
16	Effects of commercial brands and freezing methods on the specific	
	surface area of FDTB.	64
17	Scanning electron micrograph of cross section of SF-FDTB at	
	magnification x 300.	64
18	Scanning electron micrograph of cross section of QF-FDTB	
	at magnification x 300.	65
19	Effects of commercial brands and freezing methods on the	
	adsorption capacity of 100-FDTB in PS, stored at 4-5°C.	66
20	Effects of commercial brands and freezing methods on the adsorption	
	behavior of 100-FDTB prior to store in PS at 4-5°C for 24 h.	67
21	Effects of commercial brands and freezing methods on the gel strength	
	of reformative FDTB prior to storage in PS at 4-5°C for 16-18 h.	68
22	Effects of immobilized time and freezing methods on the viability	
	of B. infantis. Cell suspension of B. infantis was adsorbed to	
	Special Sacoo®QF-FDTB and SF-FDTB prior to store at 4-5°C for 24 h.	70
23	Effects of commercial brands and freezing methods of FDTB on the	
	viability of immobilized B. longum, B. bifidum, and B. infantis,	
	stored at 4-5°C for 16-18 h.	71
24	Effects of commercial brands and freezing methods of FDTB on the	
	percentage of immobilization of B. longum, B. bifidum, and B. infantis,	
	stored at 4-5°C for 16-18 h.	72
25	Effect of freezing methods of FDTB on the percentage of	
	immobilization of B.longum, B. bifidum, and B. infantis,	
	stored at 4-5°C for 16-18 h.	73
26	Effects of bifidobacterial cell concentrations and freezing methods	
	of FDTB on the viability of immobilized B. longum that stored in the	
	bifidobacterial cell suspension at 4-5°C for 16-18 h.	76

27	Effects of bifidobacterial cells concentrations and freezing methods of	
	FDTB on the viability of immobilized B. bifidum stored at 4-5°C	
	for 16-18 h.	76
28	Effects of bifidobactrial cell concentration and freezing methods of	
	FDTB on the viability of immobilized B. infantis stored at 4-5°C	
	for 16-18 h.	77
29	Effect of freezing methods of FDTB on the viability of immobilized	
	B. longum and B. infantis stored at 4-5°C for 16-18 h.	78
30	Effect of bifidobacterial cell concentrations on the viability of	
	immobilized B. infantis in FDTB stored in the bifidobacterial cell	
	suspension at 4-5°C for 16-18 h.	78
31	Effect of freeze-drying on the viability of immobilized B. longum,	
	B. bifidum, and B. infantis in Special Sacoo®SF-FDTB.	79
32	Scanning electron micrograph of dried B. longum at magnification x 5000.	81
33	Scanning electron micrograph of cross section of immobilized B.longum	
	in Special Sacoo®SF-FDTB at magnification x 8,000.	81
34	Scanning electron micrograph of cross section of immobilized	
	B.bifidum in Special Sacoo®SF-FDTB (1 mm depth) at magnification	
	x 5,000.	82
35	Scanning electron micrograph of cross section of immobilized	
	B. bifidum in Special Sacoo®SF-FDTB (2 mm depth) at magnification	
	x 5,000.	82
36	Weight of coating materials on the coated-immobilized bead.	84
37	Effect of coating materials on the viability of immobilized	
	B. longum, B. bifidum, and B. infantis in Special Sacoo®SF-FDTB.	85

38	Scanning electron micrograph of outer surface area of palmitic acid	
	coated-immobilized bead at magnification x 37.	86
39	Scanning electron micrograph of outer surface area of beeswax	
	coated-immobilized bead at magnification x 30.	86
40	Scanning electron micrograph of outer surface area of sodium	
	caseinate-coating of immobilized bead after coated with beeswax at	
	magnification x 37.	87
41	The survival of free cells, non-coated and coated-immobilized	
	B. longum, B. bifidum, and B. infantis in simulated gastrointestinal	
	fluids without enzyme at 37°C for 310 min.	90
42	Scanning electron micrograph of the cross-section of coated-	
	immobilized bifidobacteria in Special Sacoo®SF-FDTB after storage	
	in simulated gastrointestinal fluids without enzyme for 310 min	
	at magnification x 300.	91
43	Scanning electron micrograph of the cross-section of sodium caseinate	3
	and beeswax-coated-immobilized B.infantis in Special Sacoo®SF-FDTF	3
	after storage in simulated gastrointestinal fluids without enzyme for	
	310 min, at magnification x 5,000.	91
44	Effects of coating materials and storage time on the survival of non-	
	coated and coated-immobilized B. longum in Special Sacoo®SF-FDTB	
	during storage in pasteurized yogurt at 4-5°C for 4 wk.	94
45	Effect of storage time on the survival of immobilized B. longum in	
	Special Sacoo®SF-FDTB during storage in pasteurized yogurt at 4-5°C.	95
46	Effect of coating materials on the survival of immobilized B. longum	
	in Special Sacoo®SF-FDTB during storage in pasteurized yogurt at	
	4-5°C for 4 wk.	96
47	Effects of coating materials and storage time on the survival of non-	
	coated and coated-immobilized B. bifidum in Special Sacoo®SF-FDTB	
	during storage in pasteurized yogurt at 4-5°C.	96
	- · · · · · · · · · · · · · · · · · · ·	

48	Effects of coating materials and storage time on the survival of non-	
	coated and coated-immobilized B. infantis in Special Sacoo®SF-FDTE	3
	storage in pasteurized yogurt at 4-5°C.	97
49	Effects of coating materials and storage time on the pH of the pasteuriz	ed
	yogurt containing non-coated and coated-immobilized B. longum	
	in Special Sacoo®SF-FDTB during storage at 4-5°C.	97
50	Effects of coating materials and storage time on the pH of the pasteuriz	ed
	yogurt containing non-coated and coated-immobilized B. bifidum	
	in Special Sacoo®SF-FDTB during storage at 4-5°C.	98
51	Effects of coating materials and storage time on the pH of the pasteuriz	ed
	yogurt containing non-coated and coated-immobilized B. infantis	
	in Special Sacoo®SF-FDTB during storage at 4-5°C.	98
52	Effect of coating materials on the pH of the pasteurized yogurt	
	containing immobilized B. longum, B. bifidum, and B. infantis	
	in Special Sacoo®SF-FDTB during storage at 4-5°C.	99
53	Scanning electron micrograph of the outer surface of non-coated-	
	immobilized bifidobacteria in Special Sacoo®SF-FDTB after stored in	
	pasteurized yogurt at 4-5°C for 4 wk, at magnification x300.	101
54	Scanning electron micrograph of the outer surface of double layers	
	coating with sodium caseinate and palmitic acid immobilized	
	bifidobacteria in Special Sacoo®SF-FDTB after storage in pasteurized	
	yogurt at 4-5°C for 4 wk, at magnification x300.	101
55	Scanning electron micrograph of the outer surface of sodium caseinate	
	and PANODAN® coated-immobilized bifidobacteria in Special Sacoo®	
	SF-FDTB after storage in pasteurized yogurt at 4-5°C for 4 wk, at	
	magnification x300.	102

56	Scanning electron micrograph of the outer surface of sodium caseinate	
	and beeswax coated-immobilized bifidobacteria in Special Sacoo®	
	SF-FDTB after storage in pasteurized yogurt at 4-5°C for 4 wk,	
	at magnification x300.	102
57	The survival of non-coated and coated-immobilized B. longum,	
	B. bifidum, and B. infantis in Special Sacoo®SF-FDTB after storage in	
	pasteurized yogurt at 4-5°C for 4 wk and incubated in simulated	
	gastrointestinal fluids without enzyme at 37°C for 310 min.	104
58	Effect of storage time on the survival of free cells and non-coated-	
	immobilized B. longum in Special Sacoo®SF-FDTB during storage in	
	sterilized yogurt at 4-5°C for 4 wk.	106
59	Effect of storage time on the survival of free cells and non-coated-	
	immobilized B. bifidum in Special Sacoo®SF-FDTB during storage in	
	sterilized yogurt at 4-5°C.	106
60	Effect of storage time on the survival of free cells and non-coated-	
	immobilized B. infantis in Special Sacoo®SF-FDTB during storage in	
	sterilized yogurt at 4-5°C.	107
61	The survival of free cells, non-coated-immobilized B. longum,	
	B. bifidum, and B. infantis in Special Sacoo®SF-FDTB after storage in	
	sterilized yogurt at 4-5°C for 4 wk and incubated in simulated	
	gastrointestinal fluids without enzyme at 37°C for 310 min.	108

ABBREVIATIONS

FDTB Freeze-Dried-Gelatinized Tapioca Starch Beads

PBS Phosphate-Buffered Saline

PS Peptone Water Saline

QF Quick Freezing

MRS deMan-Rogosa-Sharpe

MS Mean Square

TSB Tapioca Starch Beads

SEM Scanning Electron Microscope

SF Slow Freezing

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved