		Pa
Acknowledgemen	ts	i
Abstract(Thai)		
Abstract(English)	(\mathcal{G})	,
List of Tables		Х
List of Figures		
Abbreviations and	d symbols	52
Chapter 1	Introduction	
Chapter 2	Literature review	
	2.1 Crop improvement	
	2.2 Hybrid rice	
	2.3 Haploid and doubled haploid plants production	
	2.4 In vitro techniques	
	2.4.1 Anther and pollen culture	
	2.4.1.1 The benefit of anther culture	
	2.4.1.2 Modes of androgenesis	
	2.4.1.3 Factors affect on androgenesis	
	2.4.1.4 Stage of the microspores and stress	
	Pretreatment	

2.4.2 Callus cultures	16	
	2.4.3 Cell suspension cultures	19
	2.4.4 Embryogenesis in suspension cultures	21
	2.4.4.1 Subcultering	22
	2.4.4.2 Subcultering hazards	23
	2.5 The components of plant tissue culture media	24
	2.5.1 Macro- and Micro-nutrients	24
	2.5.2 Growth regulators	26
	2.6 Genetic stability	27
	2.7 Doubling chromosome number	27
	2.8 Somaclonal and gametoclonal variations	28
	2.8.1 Sources of somaclonal variation	29
	2.8.2 Factors determining somaclonal variation	29
	2.8.3 Applications somaclonal variation in plant	30
	breeding	
	2.9 Chromosomal analysis of in vitro cultured tissue and	31
	regenerated plants	
	2.10 Auxin effect in tissue culture	32
	2.10.1 Induction of callus growth	32
	2.10.2 Organ cultures	33
	2.10.3 Embryogenesis	34
	2.11 Growth regulator shock	35
	2.12 Synthetic seeds (Artificial seeds)	-36
	2.12.1 Advantages of synthetic seeds	40

	2.12.2 Limitations of synthetic seeds	41
Chapter 3	Material and methods	45
	3.1 Plant materials	47
	3.2 Chemical reagents	47
	3.2.1 <i>In vitro</i> culture media	47
	3.2.2 Haploid diploidization (Chromosome doubling)	49
	3.2.3 Chromosome analysis	49
	3.2.4 Synthetic seed production	49
	3.3 Instrument	49
	3.4 Equipments	50
	3.5 Methods	51
	3.5.1 Pollen culture	51
	3.5.2 Caulogenesis inducement	52
	3.5.3 Hormone Shock, Doubling chromosome	53
	and Embryogenesis inducement	
	3.5.4 Chromosome analysis	53
	3.5.5 Synthetic seed production	54
	3.5.6 Statistical Analysis	55
Chapter 4	Results and Discussion	56
	4.1 Pre-Treatment	56
	4.2 Caulogenesis inducement	61
	4.3 Embryogenesis inducement and doubling	65
	chromosome	
	4.4 Synthetic seed production	75

	4.5 Germination and conversion of encapsulated	81
	embryoids	
Chapter 5	Conclusions	83
References		85
Appendices		105
Appendix A		106
Appendix B		114
Appendix C		115
Appendix D		5 117
Appendix E		123
Curriculum vitae		131

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table		Page
4.1	Effect of low temperature treatment on development stage of	59
	F1 pollen. ^a	
4.2	Effect of low temperature treatment on development stage of	60
	H1 pollen. ^{<i>a</i>}	
4.3	Effect of low temperature treatment on F1 and H1 androgenesis	61
	in LS media. ^{<i>a</i>}	
4.4.	Influence of the various LS media formulas on the anther culture	70
	response of F1 hybrid rice. ^{<i>a</i>}	
4.5.	Influence of the various LS media formulas on the anther culture	71
	response of H1 hybrid rice. ^{<i>a</i>}	
4.6.	Influence of the various LS media formulas on the caulogenesis	72
	of F1 and H1 anther hybrid Rice. ^{<i>a</i>}	
4.7	Influence of LS liquid media supplemented with different	73
	concentration of colchicine and 2,4-D on the embryogenesis of	
	F1 hybrid rice. ^a	
4.8	Effect of different colchicine and 2,4-D concentrations on	74
	chromosome doubling in F1 hybrid rice anther culture. ^a	

- 4.9 Result of storage time on inducing desiccation tolerance synthetic seed germination percentage and speed of germination after dehydration was persued until seeds lost 80% of their moisture contents
- 4.10 Effect of different benomyl concentration of encapsulating applied to embryoid of KDML 105 x SPR 1 (H1)

80

78

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

 4.1 Stage of microspore development of hybrid rice (a) early uninucleate (b) mid- uninucleate (c) late- uninucleate (d) binucleate. 	
(d) binucleate.)
)
4.2 The difference of callus induction from anther on LS media 69	
formula no.10 after 4 weeks of culture (a) F1 hybrid anther and	
(b) H1 anther. The difference of organogenesis formation in anther	
culture on LS media formula no.4 promoted organogenesis in F1	
anther culture (c) and in H1 anther culture (d) after 4 weeks of	
culture. Embryogenic callus formation (e) and plant regeneration	
(f) from anther culture after 4 weeks of culture.	
4.3 Differentiation of embryoids after culture calli in LS media 69)
supplemented 0.2 g /L colchicine and 100 μ M 2,4-D (a).	
compare with conventional anther culture method (b) after 8 weeks.	
4.4 Analyzed metaphase chromosome of ELSs after (a). treated with 69)
0.2 g /L colchicine and 100 μ M 2,4-D and (b) treated with over	
0.3 % colchicines (denature chromosome).	
4.5 Synthetic seed (a). during dehydration persued until the seeds 79)
lost 80% and (b) compare size of Synthetic seed before and after	
dehydration.	

4.6 Synthetic seed (a). during dehydration persued until the seeds 79
lost 80% and (b) compare size of Synthetic seed before and after dehydration.

82

4.7 F1 hybrid seed germination compare with H1 synthetic seed (a).
4 days, (b) 14 days and synthetic seeds after culturing on LS media 14 days (c).

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

ABA	=	Abscisic acid
BA	=	6-benzylaminopurine
°C	=	Degree of Celsius
2,4-D	=	2,4-Dichlorophenoxyacetic acid
cm	=	Centimeter
cv.	=	Cultivar
DW	=	Dry weight
EDTA	=	Ethylenediaminetetraacetate
e.g.	=	Exempli gratia (for example)
g	=	Gram
GA	-	Gibberellic acid
hrs	=	Hours
IAA	7	Indole-3-acetic acid
IBA	=	Indole-3-butyric acid
i.e.	=	Id est (it is or that is)
L	=	Liter
LS	E K	Linsmaier and Skoog
mg	=	Milligram
mg/L	-	Milligram per liter
ml	-	Milliliter

xviii

mm	=	Millimeter
mM	=	Millimole
MS	5	Murashige and Skoog
NAA	=	α-Naphthaleneacetic acid
rpm	=	Revolutions per minute
UV	=	Ultraviolet (light)
\mathbf{v}/\mathbf{v}	=	volume/volume (concentration)
w/v	=	weight/volume (concentration)
%	=	Percent
μM	=	Micromole

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved