CHAPTER 5

GENERAL DISCUSSION

Plant pests which include insects, pathogens and weeds, continue to be major constraints to food and agricultural production in parts of all regions of developing countries, and they are difficult to control because of their population are variable in time, space, and genotype. Their effects range from mild symptoms to catastrophes in which large areas planted to foods crops are destroyed. Crop losses significantly reduce the amount of food available for human and animal consumption, thus contributing directly to food insecurity. At least 10% of global food production is lost to plant disease (James, 1998; FAO, 2000). Among them, various taxa of plant pathogenic fungi including a group of *Cercospora* complex causing leaf spot on a wide range of plants, particularly, may cause catastrophic plant disease because of at least five reasons:

(1) Many of them sporulate prolifically, the spores providing copious inoculum, which may infect further plants (Agrios, 2005);

(2) Their latent period, i.e., the time between infection and the production of further infectious propagules, usually spores, is very short, may be only a few days (Deacon, 2006);

(3) The spores may be spread as high-density inoculum in surface water or in droplets by rain-splash or may be carried long distance by the wind (Deacon, 2006);

(4) They may produce chemical compounds which are phytotoxic and could also destroy the plant's structure, for example *Cercosporin* (Daub and Ehrenshaft, 2000);

(5) They may draw nutrients away from the economically valuable part of the plants by the production growth regulator inhibitors, such as Abscisic Acid (ABA) produced by *Cercospora rosicola*, and consequently depress yields (Norman *et al.*, 1983).

At the present time, we noted that the threat is particularly greater in developing countries which are mostly located in tropical areas, where diversity of live and plant pathogens particularly are higher than temperate areas as previously suggested (Hawksworth, 1993; Shivas and Hyde 1997), but the infrastructures and number of plant pathologists are often poorly resourced. In fact, the problem of plant disease in developing countries is might also fundamentally be arised from two factors: firstly, the difficulty of quantifying plant disease and relating to the failure of crops to reach achievable yields. It is proved by this study where approximately 166 species of the true cercosporoid fungi have been recorded from 2004 until 2008 with the aid of several expertises worldwide either by helping in identification or by providing some importance literatures for identification. In fact, until 1994, only approximately 50 species of cercosporoid fungi were recorded from Thailand (Giatgong, 1980; Sontirat et al., 1980, 1994; Petcharat and Kanjanamaneesathian, 1989). The inability to supply such hard data to administrators and politicians has meant that plant pathology, in relation to its importance, continues to be grossly underfunded. Secondly, globalizations of agriculture, its mean crops plants, often with narrow genetic base, are now grown far from their centers of origin, and therefore, also far from their pathogens that have coevolved with them. As a result, these plants are unlikely to have evolved resistance to new strains of the pathogen that may have subsequently arisen in the center of origin. In addition, crops introduced to a new area may be poorly equipped to resist pathogenic organisms that may be resident there.

This study also found and revealed that approximately 40 species of plants infected by the true cercosporoid fungi species in northern areas of Thailand are not originally from Asian continent (table 10). Of the 43 species plants which are recorded as new hosts of the true cercosporoid fungi in this study, 16 species are also not originally from Asian continent (see chapter 2, table 1; chapter 5, table 10). We might reaffirm that, recently, globalizations of agriculture are well-established, and the plants either crops or ornamentals are well-distributed worldwide and introduced into new areas by various manners.

The following two suggestions are possibly useful in order to deal with the situations discussed above:

(1) At the biological level, increasing level of the speed and accuracy of identification of the causal organisms, accuracy of estimation of the severity of disease and its effect on yield, and identification of its virulence mechanism (Strange and Scott, 2005).

If these requirements are fulfilled well, disease may then be minimized by the reduction of the pathogen's inoculum, inhibition of its virulence mechanisms, and promotion of genetic diversity in the crops. Enhancing the capability of rapid disease detection and diagnosis will significantly increase the probability of achieving containment and eradication of high-risk pathogens. Therefore, study on biodiversity and conservation including surveying, collecting, and archiving pathogen cultures and associated data in a format that supports pathogen detection and diagnosis should be an important step in enhancing nationwide preparedness.

(2) Secondly, creating plant diseases resistance crops by using conventional pant breeding.

Lenné and Wood (1991) reviewed the need to broaden the genetic base of crops to combat genetic vulnerability, as the variation within and between the varieties of traditional agriculture are progressively replaced by more uniform and higher yielding varieties. Lenné and Wood (1991) also mentioned three main germplasm resources are available to plant breeders, viz, commercial varieties, landraces (traditional varieties), and a range of wild ancestral species and other wild relatives. Of them, wild ancestral species and other wild relatives are the most promising germplasm because of the closeness relationship to a crop has hitherto determined the value of wild germplasm in breeding. This relative closeness indicates possible resistances to comparable diseases because of the interface between crops and their wild relatives is an evolutionary dynamic one, and therefore, these resistances may be available to breeders using conventional crossing.

Successful disease resistance in wild germplasm populations is related to both individual and population survival from the environmental factors including pathogens (Brown *et al.*, 1989). Coexistence of wild relatives of crops and their indigenous pathogens in the center of origin of the crops is only one of many systems where field studies are needed to facilitate effective use of resistance. Therefore, at all stages of collection and maintenance of wild germplasm, at the collecting site, the biology of the wild species (life span, ecology, and breeding system) and the biology and ecology of their pathogen(s) will determine the pattern of distribution of disease resistance between and within host populations (Brown *et al.*, 1989). As much of this type of information as possible should be available for pre-collecting planning, which should involve plant pathologists. Predictions on the presence or absence of hosts and pathogens will need to be verified in the field, necessitating a plant pathologist with the collecting mission. Disease evaluation data for previously collected germplasm should be used to target collecting sites. However, this important information that must be provided by plant pathologists is mostly lacking or could not be completed in the developing countries due to infrastructures and human resources are often poorly 67.97 resourced.

5.1. Important Findings in This Study

This study has surveyed, collected, and investigated a diversity of Cercospora and allied genera particularly the genera belong to the true cercosporoid fungi proposed by Crous and Braun (2003) in several provinces of northern part of Thailand (chapter 2). In total, 166 species of the true cercosporoid fungi associated with 147 plants genera of 63 families have been examined and identified, consist of 78 Cercospora, 21 Passalora, and 67 Pseudocercospora species. Twenty-one species are new to science in which nine species have been validly published or are in the process of publication. Sixty-two species are new records to Thailand, and 43 plants species are new host to this group of fungi. Thirty species of genus Cercospora belong to C. apii s. lat. In addition, approximately 34 species of important crops such as tea (Camellia sinensis), coffee (Coffea arabica), banana (Musa acuminata), lettuce (Lactuca sativa), etc. (table 10), 97 species of ornamentals plants, 11 species weeds, and 30 species of plants with other properties, have been infected or associated with the true cercosporoid fungi.

 Table 10 List of the plant species associated with the true cercosporoid fungi in this

 study and their uses [Data of plant properties were cited from USDA plant database

 (http://www.plants.usda.gov/index.html) and Wikipedia (http://wikipedia.org/)].

Genus	Notes
Acababaauillasiana	Ornamentals, distributed from southern United State
Acalypha wilkesiana	to Uruguay and northern Argentina.
9.	Ornamentals, native to western Africa, Madagascar
	southern and eastern Asia (China, Malaysia,
Alangium salviifolium	Indonesia, and the Philippines), tropical Australia, t
THE E	western Pacific Ocean islands, and New Caledonia.
Alcea rosea	Ornamentals, native to southwest and central Asia.
Alpinia purpurata	Ornamentals, native to Malaysian peninsula.
	Medicinal properties, especially leaves, native to
Andrographis paniculata	India and Sri Lanka.
Augebia humongar	Important crops, native to South America, Mexico
Arachis hypogaea	and Central America.
0 6	Important crops and ornamentals as well, native to
Areca catechu	tropical Pacific, Asia, and parts of east Africa.
Argyreia henryi	Ornamentals, mainly tropical Asia.
•	

Table 10 (continued)

Genus	Notes
	Medicinal properties, distributed from the Himalaya
	to Sri Lanka through South East Asia (includes
Aristolochia tagala	Myanmar, Indonesia, Indochina, and Thailand) and
	China, to Oceania (includes the whole of Malesia, the
5.	Solomon Islands and Queensland in Australia).
	Ornamentals and medicinal properties, growth in
1000	temperate climates of the Northern Hemisphere and
Artemisia indica	Southern Hemisphere, usually in dry or semi-dry
	habitats.
Barleria cristata	Ornamentals, native of India and Myanmar.
Barleria lupulina	Ornamentals, native of India and Myanmar.
Basella alba	Foods/vegetables, distributed in the tropics where it
Dusena aiba	is widely used as a leaf vegetable.
	Ornamentals, many species are widely planted in the
Bauhinia racemosa	tropics as "orchid trees", particularly in northern
สทรมห	India, Vietnam and southeastern China.
Beta vulgaris	Important crops, the wild ancestor is found
	throughout the Mediterranean, the Atlantic coast of
	Europe, the Near East, and India.
Didage miles -	Foods/vegetables, it is also considered as a weed in
Bidens pilosa	some tropical habitats.

Genus	Notes
D : 11 11	Ornamentals, native to South America from Brazil
Bougainvillea spectabilis	west to Peru and south to southern Argentina.
Blumea balsamifera	Medicinal properties, distributed in tropical area
Bruned bulsunijeru	especially Asia.
Brassica campestris	Important crops, distributed worldwide.
Brassica juncea	Important crops, distributed worldwide.
Brassica oleracea	Important crops, distributed worldwide.
Brassica pekinensis	Important crops, distributed worldwide.
Bridelia ovata	Wild plant, found from Africa to Asia.
Broussonetia papyrifera	The bark can be used for making high quality paper,
Broussonetia papyrifera	native to eastern Asia.
C L	Ornamentals, origin from South and Central
Brunfelsia hopeana	America, the Mexican lowlands, the Caribbean
	islands, and southern Florida.
Buddleia asiatica	Ornamentals, distributed from tropical to warm areas
Buddleja asiatica	worldwide.
pyright [©] by	Timber and medicinal properties, native to tropical
Butea monosperma	southern Asia, from Pakistan, India, Nepal, Sri
buea monosperma	Lanka, Myanmar, Thailand, Laos, Cambodia,
	Vietnam, Malaysia, and western Indonesia.

Genus	Notes
Camellia sinensis	Important crops, cultivated in the countries lie on the equator area.
Capsicum annuum	Important crops, distributed worldwide.
Capsicum annuum var. acuminatum	Important crops, distributed worldwide.
Capsicum frutescens	Important crops, distributed worldwide.
Carica papaya	Important crops, it is native to the tropics of the Americas.
Cassia agnes	Ornamentals, distributed worldwide in tropical area.
Celosia argentea	Foods/vegetables, distributed in Africa and Southeas Asia.
Celosia argentea var.	Foods/vegetables, distributed in Africa and Southeast
cristata	Asia.
Centrosema pubescens	Ornamentals, origin from tropical American.
Corchorus capsularis	Cotton and fibres properties, distributed in tropical countries.
Christella parasitica	Weeds, in tropical countries in Asia.
Chrysanthemum sp.	Ornamentals, native to Asia and northeastern Europe
Cichorium endivia	Important crops/vegetables, distributed worldwide.
Citrullus vulgaris	Important crops, originally from southern Africa.

Genus	Notes
Citrus reticulata	Important crops, it can be grown in tropical and
	subtropical areas.
	Ornamentals, native to tropical and warm temperate
Clerodendrum fragrans	regions of the world, with most of the species
5.	occurring in tropical Africa and southern Asia.
	Ornamentals, native to tropical and warm temperate
Clerodendrum paniculatum	regions of the world, with most of the species
	occurring in tropical Africa and southern Asia.
	Ornamentals, native to tropical and equatorial Asia,
Clitoria ternatea	but has been introduced to Africa, Australia and
	Europe.
	Crops, natives of Thailand, Indonesia, and other
Coccinia grandis	southeast Asian countries.
	Ornamentals, occurs naturally in southern Asia,
Codiaeum variegatum	Indonesia and other Eastern Pacific islands.
Coffea arabica	Important crops, indigenous to Ethiopia and Yemen.
ovright [©] by	Weeds, annual herb native to North America but
Conyza sumatrensis	naturalized worldwide.
5	Ornamentals, it is usually weeds, native habitat is
Cosmos sulphureus	Central America.

Genus	Notes
Crotalaria montana	Ornamentals, world-wide, mostly distributed in the tropics.
Cucumis sativus	Important crops, worldwide, originated from India.
Cucurbita moschata	Important crops, widely cultivated in south and central America and Asia.
Cuphea hyssopifolia	Ornamentals, native to Mexico, Guatemala and Honduras.
Cynara scolymus	Foods/vegetables, originating from southern Europe around the Mediterranean.
Dahlia sp.	Ornamentals, native to Mexico, Central America, and Colombia.
Dalbergia cultrata	Timber properties, wide distributed, native to the tropical regions of Central and South America, Africa, Madagascar and southern Asia.
Dalbergia stipulacea	Timber properties, wide distributed, native to the tropical regions of Central and South America,
opyright [©] b	Africa, Madagascar and southern Asia.
II rig	hts reserved

Genus	Notes
	Weeds, dangerous for human or animals, exact
	natural distribution is uncertain, due to extensive
20	cultivation and naturalization throughout the
Datura alba	temperate and tropical regions of the globe, but is
5	most likely restricted to the Americas, from the
	United States south through Mexico, where the
	highest species diversity occurs.
Dioscorea alata	Foods and vegetables properties, native to south east
	Asia.
Dioscorea bulbifera	Foods and vegetables properties, native to south east
Dioscorea baibijera	Asia.
Diosaaraa alabra	Foods and vegetables properties, native to south east
Dioscorea glabra	Asia.
	Mostly timber properties, majority are native to the
Diospyros kaki	tropics, with only a few species extending into
สทรมห	temperate regions.
ovright [©]	Important crops, widespread as a Foods Crops
Dolichos lablab	throughout the tropics, especially in Africa, India an
	Indonesia.
Doryopteris ludens	Ornamentals fern, origin from peninsular Malaysia.

Genus	Notes
Dracaena sanderiana	Ornamentals, native to Cameroon in tropical west Africa.
Dregea volubilis	Ornamentals, which occurs widely throughout the hotter parts of India and South East Asia.
Duranta erecta	Ornamentals or weeds, originally native to Central and South America and the Caribbean, it is widely naturalized throughout the tropics and has become an invasive species in Australia, China, South Africa and on several Pacific Islands. Ornamentals or weeds, originally native to Central
Duranta repens	and South America and the Caribbean, it is widely naturalized throughout the tropics and has become an invasive species in Australia, China, South Africa and on several Pacific Islands.
Elaeagnus conferta Copyright Elaeocarpus grandiflorus	Ornamentals, vast majority of the species are native to temperate and subtropical regions of Asia. Wild plant or ornamentals, distributed from Madagascar in the west through India, Southeast Asia, Malaysia, southern China, and Japan, through Australia to New Zealand, Fiji, and Hawaii in the
	east.

Genus	Notes
Erythrina sp.	Ornamentals, distributed in tropical and subtropical regions worldwide.
Eucalyptus sp.	Important crops, native to Australia.
<	Weeds, native to Mexico, but it is known in many
Eupatorium adenophorum	other parts of the world as an introduced species and
	often a noxious weed.
	Weeds, native to Mexico, but it is known in many
Eupatorium odoratum	other parts of the world as an introduced species and
	often a noxious weed.
Euphorbia cotinifolia	Ornamentals, widely distributed in Central America.
Euphorbia milii	Ornamentals, native to Madagascar.
	Fruit as foods source, native to southwest Asia and
Ficus carica	the eastern Mediterranean region (from Greece to
	Pakistan).
9.5	Fruit as foods source, native to southwest Asia and
Ficus punctata	the eastern Mediterranean region (from Greece to
pyright [©] by	Pakistan) ang Mai Universit
	Ornamentals, native to India, Nepal, Sri Lanka,

Genus	Notes
Ficus rumphii	Ornamentals, native throughout the tropics with a few species extending into the semi-warm temperate
90	zone.
Flacourtia jangomas	Ornamentals, widely cultivated in Southeast and East
	Asia.
	Ornamentals, great majority are native to South
Fuchsia sp.	America, but with a few occurring north through
	Central America to Mexico, and also several from
Q	New Zealand, and Tahiti.
	Ornamentals, originated in Asia, and is most
Gardenia jasminoides	commonly found growing in Vietnam, Southern
	China, Taiwan and Japan.
	Ornamentals, discovered in Barberton, Mpumalanga
Gerbera jamesonii	Province, South Africa.
Glochidion sphaerogynum	Ornamentals, distributed from Madagascar to the
	Pacific Islands.
Glycine max	Important crops, native to East Asia.
	ts reserved

Genus	Notes
0 0	Ornamentals, timber, and medicinal properties,
	occurring naturally throughout greater part of India at
	altitudes up to 1500 meters, and also in Myanmar,
Gmelina arborea	Thailand, Laos, Cambodia, Vietnam, and in southern
S	provinces of China, and has been planted extensively
	in Sierra Leone, Nigeria, Malaysia.
	Ornamentals, widely distributed in both tropical and
Habenaria susannae	temperate zones.
	Ornamentals, native to southern Asia, from India eas
Haldina cordifolia	to southern China and Vietnam.
H. David	Ornamentals, foods, and oil properties, native to the
Helianthus annuus	Americas.
Hibiscus rosa-sinensis	Ornamentals, native to East Asia.
Hibisous sabdariffa	Ornamentals, native to Europeans, Asians, and
Hibiscus sabdariffa	Africans.
สทรมหา	Ornamentals, native to warm, temperate, subtropical
Hibiscus sp.	and tropical regions throughout the world.
Holmskioldia sanguinea	Ornamentals, origin from China
Houttuynia cordata	Foods/vegetables, native to Japan, Korea, southern
	China and Southeast Asia.
Hydrangea macrophylla	Ornamentals, native to Japan.

Genus	Notes
Impatiens balsamina	Ornamentals or foods/vegetables, native to southern Asia in India and Myanmar.
Impatiens walleriana	Ornamentals, native to eastern Africa from Kenya to Mozambique.
Ipomoea aquatica	Foods/vegetables, found throughout the tropical and subtropical regions of the world.
Ipomoea nil	Foods/vegetables, native to most of the tropical world and it has been introduced widely.
Ipomoea obscura	Foods/vegetables, native to most of the tropical world and it has been introduced widely.
Iresine herbstii	Ornamentals, found in the wild in tropical America.
Jasminum nobile	Ornamentals, native to tropical and warm temperate regions of the Old World (Europe).
Jasminum sambac	Ornamentals, native to southern Asia, in India, Philippines, Myanmar and Sri Lanka. Ornamentals, originating in Central America,
Jatropha curcas	whereas it has been spread to other tropical and subtropical countries as well and is mainly grown in Asia and in Africa.

Table 10 (continued)

Genus	Notes
	Ornamentals, native to tropical to warm temperate
Justicia betonica	regions of the Americas, with two species occurring
	north into cooler temperate regions.
Kopsia fruticosa	Ornamentals, native to tropical and warm regions
Lablab purpureus	Important crops throughout the tropics, especially in
	Africa, India and Indonesia.
Lactuca sativa (7 cultivars)	Important crops, widely distributed.
Lagenaria siceraria	Important crops, distributed worldwide.
Lagerstroemia speciosa	Ornamentals and medicinal properties, native to
Lugersiroenna speciosa	tropical southern Asia.
Lantana camarà	Ornamentals, native to tropical regions in Central and
	South America.
I A	Firewood, fiber and livestock feed properties, weeds
Leucaena leucocephala	in Taiwan, the Hawaiian islands and Fiji.
	Ornamentals and wood properties, distributed in east
Liquidambar formosana	Asia to Europe.
Lycopersicon esculentum	Important crops, native to Central, South, and
var. pyriforme	southern North America.
Mellotus niemei	Wild plant, timber properties, found in tropical Africa
Mallotus pierrei	and Madagascar.

Genus	Notes
Manihot esculenta	Important crops, annual crops in tropical and subtropical regions.
Melia azedarach	Timber properties, native to India, southern China and Australia.
Mikania cordata	Weeds in the tropics, originates from South America.
Mitracarpus villosus	Ornamentals and medicinal properties, distributed in tropical and warm areas.
Momordica charantia	Important crops, widely grown in South and Southeast Asia, China, Africa, and the Caribbean
Morus alba	Medicinal properties, native to northern China, and is widely cultivated (and even naturalized) elsewhere.
Morus sp.	Foods and medicinal properties, native to warm, temperate, and subtropical regions of Asia, Africa, Europe, and the Americas, with the majority of the
ສີກຣິ້ນห	species native to Asia. Ornamentals, found worldwide in the woodlands of
Mucuna bracteata	tropical areas. g Mai Universit
Musa acuminata	Important crops, native to northern Australia.
Myrica esculenta	Ornamentals, has a wide distribution, including Africa, Asia, Europe, North America and South
	America, and missing only from Australasia.

Genus	Notes
	Ornamentals, native to Greater India and commonly
Nelumbo nucifera	cultivated in water gardens, the lotus is the national
	flower of India and Vietnam.
Nephrolepis biserrata	Ornamentals fern, distributed in tropical areas.
Nephrolepis cordifolia	Ornamentals fern, distributed in tropical areas.
Nerium oleander	Ornamentals, widely distributed.
Nicotiana tabacum	Important Crops, originally from southern America
Nymanhaoa stallata	Ornamentals, can be found almost anywhere around
Nymphaea stellata	the world.
	Ornamentals or as vegetables, distributed in tropics
Operculina turpethum	or warm areas.
	Ornamentals and medicinal properties, distributed
Oroxylum indicum	throughout India and South East Asia.
Oxalis debilis var.	Ornamentals, species diversity is particularly rich in
corymbosa	tropical Brazil and Mexico and in South Africa.
ansur	Ornamentals, naturally occurring in sunny locales
Pentalinon luteum	throughout the coastal areas and rock pinelands of
rioh	South Florida and the Caribbean area.
Pericampylus glaucus	Ornamentals and medicinal properties, distributed in
	Philippines and south east Asia.

Genus	Notes
Phyllanthus acidus	Ornamentals and the fruits are also edible, south
	Asia.
	Ornamentals and the fruits are also edible, south
Phyllanthus sp.	Asia.
2./	Ornamentals and also edible, naturalized in Australia,
Physalis angulata	but in the Northern Territory its arrival is thought to
	pre-date European settlement, so it is considered
305	native there
	Ornamentals fern, native to tropical areas of South
Platycerium bifurcatum	America, Africa, Southeast Asia, Australia and New
N.	Guinea.
	Ornamentals fern, native to tropical areas of South
Platycerium wallichii	America, Africa, Southeast Asia, Australia and New
	Guinea.
Polyscias scutellaria	Ornamentals, widely distributed.
Psophocarpus	เว็กยาลยเชียงไห
tetragonolobus	Important crops, native to Papua New Guinea.
reiragonolodus	y Chiang Mai Universit
Pteris biaurita	Ornamentals fern, native to tropical and subtropical
	regions of the world
Prunus persica	Important crops, native to China.

Genus	Notes
Pueraria phaseoloides	Weeds, widely distributed in tropical areas.
. 9	Ornamentals and foods, native to the region from Iran
20	to the Himalayas in northern India and has been
Punica granatum	cultivated and naturalized over the whole
Ba Sa	Mediterranean region and the Caucasus since ancient
	times.
Quisqualis indica	Ornamentals, found in Asia.
202	Important crops, domesticated in Europe in pre-
Raphanus sativus	Roman times, they are grown and consumed
Ě	throughout the world.
	Ornamentals/wild plants, natural habitats are
Rhinacanthus nasutus	subtropical or tropical dry shrub-land and subtropical
MA	or tropical dry lowland grassland.
	Source of castor oil/medicine, indigenous to the
	southeastern Mediterranean region, Eastern Africa,
Ricinus communis	and India; today it is widespread throughout tropical
pyright [©] b	y regions i ang Mai Universit
rio	Ornamentals, most are native to Asia, with smaller
Rosa hybrida 🛛 💍	numbers of species native to Europe, North America,
	and northwest Africa.

Genus	Notes
Sambucus simpsonii	Ornamentals, native in temperate-to-subtropical regions.
Sechium edule	Important crops, origin from south and central America.
5.	Ornamentals, worldwide distribution, mostly found in
Sida mysorensis	the tropics and subtropics, although some species
	extend into temperate regions.
Solanum indicum	Important crops, native to India and Sri Lanka.
Solanum melongena	Important crops, native to India and Sri Lanka.
Solanum nigrum	Medicinal properties, native to Asia and Europe.
Solanum trilobatum	Important crops, native to South Asia.
Solanum verbascifolium	Weeds, naturalized in Australia and New Zealand.
Solanum xanthocarpum	Weeds, leaves are edible, distributed in tropical area.
Solanum torvum	Important crops, tropical and warm regions.
Solenostemon	Ornamentals, origin from Southeast Asia and
scutellarioides	Malaysia a a lo
Spinacia oleracea	Important crops, native to central and southwestern
rig	Asia. S reserve

Genus	Notes
	Ornamentals or timber properties, distributed from
	northern Mexico and the Antilles south to northern
Tabebuia sp.	Argentina and central Venezuela, including the
5.	Caribbean islands of Hispaniola (Dominican
	Republic and Haiti) and Cuba
Tagetes erecta	Ornamentals, native to Mexico and Central America.
224	Foods/vegetables, grown in West Africa, South Asia,
Talinum triangulare	Southeast Asia, and warmer parts of North America
	and South America.
Tecoma stans	Ornamentals, native to South and Central America,
	north to Mexico and the southwestern United States.
	Ornamentals and timber properties, native to the
Tectona grandis	south and southeast of Asia, and is commonly found
	as a component of monsoon forest vegetation.
0 0	Ornamentals, distributed in tropical and subtropical
Tithonia diversifolia	areas such as Central America, Southeast Asia and
oyright [©] by	Africaniang Mai Universit
Tridax procumbens	Weeds, native to the tropical Americas but it has been introduced to tropical, subtropical, and mild
	temperate regions worldwide.

Genus	Notes
Vigna radiata	Important crops, native to Pakistan and India.
0 9	Important crops, legume crops in the semi-arid
Vigna unguiculata	tropics covering Asia, Africa, southern Europe and
	Central and South America.
Vigna unguiculata var.	Important crops, legume crops in the semi-arid
	tropics covering Asia, Africa, southern Europe and
sesquipedalis	Central and South America.
	Weeds, native to tropical, subtropical and also warm
Vitex quinata	temperate regions throughout the world.
	Ornamentals, native to southern Africa from South
Zantedeschia sp.	Africa north to Malawi.
	Ornamentals, originally from scrub and dry grassland
Zinnia elegans	in an area stretching from the American Southwest to
	South America, but primarily Mexico.
0 0	Ornamentals, originally from scrub and dry grassland
Zinnia grandiflora	in an area stretching from the American Southwest to
opyright [©] b	South America, but primarily Mexico.
	hts reserved

A high number of the true cercosporoid fungi collected in this study represent the expectation of several previous authors (Rossmann *et al.*, 1987; Hawksworth 1991, 1993; Shivas and Hyde, 1997) that plant pathogens in tropical regions are more diverse than temperate regions. This facts possibly due to two-thirds of the world's flowering plants occur in the tropics (Heywood, 1985), thus the enormous diversity of plant species in the tropics will undoubtedly support an equally diverse flora of plant pathogens including fungi that are generally thought to have co-evolved with their hosts (Pirozynski, 1988).

In a smaller scale, a high number of the true cercosporoid fungi found in this study also represent a high number of total plant pathogens associated with various plants in Thailand. In this study alone, approximately 34 species of important crops in Thailand (table 10) have been infected by members of the true cercosporoid fungi. With a highly number of the members of the true cercosporoid fungi infecting crops were found and tracked in this study, it is possible that epidemics caused by the members of this group of plant pathogens in uniformly monoculture plants or crops will occur in Thailand. Cases of epidemics caused by the cercosporoid fungi with a significant damage to the crops production were reported from several countries, for examples, severe cercospora leaf spots epidemics in sugar beet (Beta vulgaris L.) were reported from southern Germany caused by C. beticola during the late 1980s and early 1990s (Wolf and Verreet, 2005); a similar epidemic case by the same fungus, C. beticola, was also found in Hokkaido, Japan in 2000 (Yuko et al., 2002). Therefore, consequently, as plant pathologists we have to realize in a cautious way to the impacts and threats caused by this group of pathogens to the agricultural systems and food security, because when pathogens are present in an area (and no official

efforts are made for its eradication), it can be considered an established pathogen. Damage by established pathogens can be severe and may change from year to year. This situation could only be avoided by developing our capacities and capabilities in identification, tracking, and diagnosing plant pathogens associated with crops in farming area or from natural ecosystems.

We also found many plants associated with the true cercosporoid fungi are not originally from Asian continent or tropical areas (table 10). Thus, this finding is very important to be cautioned by plant pathologists in Thailand because many current pathogens have the capacity for rapid multiplication and for long distance migration and can cause extensive crop damage in the new areas. For example, *C. zeae-maydis*, a foliar pathogen causing gray leaf spot of maize / corn (*Zea mays L.*), first discovered in 1924 in Illinois, U.S.A. At first, *C. zeae-maydis* did not become an important pathogen of maize until the 1980s, however, by the mid-1990s, the fungus caused significant losses throughout the corn belt of the U.S., and it is now the most devastating foliar pathogen of maize in much of the world (Ward *et al.*, 1999). Unfortunately, such a migratory pathogen is very difficult to avoid nowadays because of many factors, include international trade and food aid that increases the movements of plants and often their accompanying pathogens, and migration and tourism that increase movements of people who carry plant materials.

In the molecular phylogenetic study of the true cercosporoid fungi with related taxa based on ITS region of rDNA sequence data using NJ, MP and Bayesian analyses (chapter 3), it is clear that *Cercospora*, *Passalora*, and *Pseudocercospora*, are well defined morphologically and phylogenetically as previously suggested (Stewart *et al.*, 1999; Goodwin *et al.*, 2001; Crous and Braun, 2003; Hunter *et al.*,

2006; den Breeÿen *et al.*, 2006; Burgess *et al.*, 2007). However, further molecular investigation of genus *Stenella* with larger dataset is necessary due to the genus *Stenella* is still polyphyletic in the analysis. In addition, genus *Stigmina* appeared as a sister group to genus *Phaeoisariopsis*, and morphologically, both species share a similarity characteristics in having multi septate and obclavate conidia with truncate and unthickened hila, sometimes verruculose, and composed of transverse and longitudinal septate (Ellis, 1971). Although both species are separated due to synnematous conidiophores of *Phaeoisariopsis*, however, conidiophores in *Stigmina* also in packed closely together forming a pulvinate sporodochia (synnematous-like, but very short in size). Therefore, further molecular analysis with more sequences included is needed to determine the relationship between the two genera.

Another important finding from the molecular analysis in this study, that is, most of the members of *Cercospora* and *Pseudocercospora* are possibly not hostspecific based on ITS region of rDNA sequence analysis using NJ, MP, and Bayesian inference approaches. This is probably true because the genus *Mycosphaerella* and its anamorphs (*Cercospora*-complex) encompass both saprobic and parasitic life forms (Aptroot, 2006), although the parasitic species are supposed to be host-specific. However, in some cases experimental evidence exists of the contrary (Crous and Braun, 2003). Therefore, at present time, it is still difficult to determine which species are specific to their host, and which species have a multi-hosts relationship. The saprobic species, although in the past often described repeatedly from different hosts, are generally accepted to be less host-specific.

In the study of diversity of the cercosporoid fungi associated with weeds (chapter 4), it is revealed that one species, *C. christellae* associated with exotic weed

Christella parasitica, is a new to science. In addition, this novel fungue is possibly potential as a source of biocontrol agent due to it has an ability to produce red pigment (cercosporin) in the artificial medium. In this study also found that four species of weeds associated with the true cercosporoid fungi in northern Thailand are 670375 not origin from Asian continent.

5.2. Problems Encountered

The fundamental problems in this study are a limitation source of sequences in the Web-based GenBank database available although over 3,000 names have been published as Cercospora and allied genera (Crous and Braun, 2003), and facilities and funding for doing molecular analysis. Lacking of available sequences for molecular phylogenetic analysis have been serious problems not only in this study but also many scientists worldwide, therefore, the study regarding the phylogenetic relationships among taxa in this group remains few until present time. Study on the cercosporoid fungi evolution, their association with host, and pathogenicity analysis which are depending on the availability of sequences data become difficult to carry out, and taxonomically, many genera proposed based on traditional method (morphological description only) are still uncertain. This is partly due to the fact that these organisms are cultivated with difficulty, and also that the first to address the taxonomy of this complex based on DNA sequence data was only relatively recently published (Stewart et al., 1999). We also face another difficulty during our molecular analysis, that is, in the NCBI GenBank database alone, most of the cercosporoid fungi taxa sequences available are generated from ITS region. Other genes, such as β-tubulin, calmodulin, etc., are very limited if not lacking. Therefore, in this study, we sequenced only ITS

508

regions, and consequently, we found that it is difficult to make any conclusion on the evolution study of *Cercospora* complex and their host specificity based on the single gene locus sequence analysis.

In simpler manner of systematic works in this study, biodiversity work based on morphological elucidation, literatures which are key in studying biodiversity, are also lacking and very difficult to obtain due to the limitation in our library, and possibly, in other libraries in developing countries as well. The literatures used and obtained for the identification in this study are very scattered and limited. Although we have successfully collected most of the literatures of the cercosporoid fungi from Thailand such as Giatgong (1980), Sontirat et al. (1980, 1994), Petcharat and Kanjanamaneesathian (1989), however, it is definitely still not sufficient enough to fulfill the need of literatures for this study due to those literatures are only represent less than 1% of total cercosporoid fungi taxa recorded worldwide. Fortunately, we have established cooperation and relationship with other scientists worldwide and with their kind assistance and help, some important references were available in order to identify our collections. Without the collaborations with other scientists, definitely, it will not be possible to study biodiversity and systematic of plant pathogens appropriately in developing countries such as Thailand due to limited resources and infrastructures. **Chiang Mai University**

5.3. Conclusions and Future Directions

Mycologists and plant pathologists share a common goal, that is, to understand the biology of incredible plant pathogenic fungi, and more specifically, to understand the genetic basis of pathogenicity and host-specificity. The *Cercospora* complex or cercosporoid fungi affords the opportunity to study plant pathogens that may have adaptive value for plant pathogenicity, survival from various controls and human treatments, and the latter contributing to their systematic and evolution.

In this study, it is revealed that one species, *C. christellae* associated with exotic weed *C. parasitica*, is a new to science. This fungus possesses an ability to produce red pigment (cercosporin), a broad spectrum photoactivated toxin which is potential as herbicides, in the artificial medium (chapter 4). Therefore, it is important to carry out further intensive study on the biology of this pathogen in order to develop alternative control strategies of weeds, particularly invasive weeds in Thailand.

In taxonomy study by using molecular phylogenetic analysis of ITS region sequence dataset (chapter 3), it is clear that the members of three genera noted as true cercosporoid fungi, viz, *Cercospora, Passalora*, and *Pseudocercospora* are monophyletic as previously suggested (Stewart *et al.*, 1999; Goodwin *et al.*, 2001; Hunter *et al.*, 2006; den Breeÿen *et al.*, 2006; Burgess *et al.*, 2007). These three taxa are well established morphologically by Crous and Braun (2003). The three genera form well supported monophyletic clades with high bootstrap support by using three molecular phylogenetic analyses, viz, Neighbor Joining (NJ), Maximum Parsimony (MP), and Bayesian Inference. However, another genus of the true cercosporoid fungi, *Stenella*, is still polyphyletic, and therefore, further investigation using more taxa are necessary to be carried out in order to clarify morphological elucidation of this genus due to the number of sequences of this taxa is a few (only 12 sequences). In this study, it is also revealed that most taxa of the cercosporoid fungi have not showed a sign of host specificity by using ITS sequences dataset alone, at least at some degree of host levels, such as genus or family. This is probably true even if the molecular analysis executed by using more genes, either from other regions of nuclear rDNA such as 28S and 18S regions (Crous *et al.* (2007), or protein genes such as Elongation Factor 1- α gene (EF), Actin gene (ACT), Calmodulin gene (CAL), and Histone H3 gene (HIS) (Ayala-Escobar *et al.* (2005). Therefore, at present time, it is still difficult to determine the host specificity of this group of fungi. In addition, because the identification of the cercosporoid fungi taxa until now is host-based approaches, therefore, the significant achievement in molecular study of host-pathogens association in this group of fungi will affects greatly to the systematic and other advances study in plant pathology.

Vast number of the true cercosporoid fungi species has also been collected and preserved in this study (chapter 2) which indicated a highly diversity of plant pathogens in tropical area as previously predicted (Hawksworth *et al.*, 1993; Shivas and Hyde, 1997). Although the study of biodiversity and conservation of plant pathogen such as the cercosporoid fungi diversity is counter-intuitive to any plant pathologist dedicated to the prevention or eradication of plant diseases that causes 30% of losses of agricultural production worldwide (Agrios, 2005) and have sometimes devastated native species (Newhook and Podger, 1972), these subjects are now being recognized as key components in developing effective and efficient control of plant diseases, and are potentially producing a great benefit to humankind, for example, in basic scientific research, in biotechnology and novel drug, and pesticide production. Moreover, surveying and preserving plant pathogens associated with crops in farming area or from natural ecosystems are basically necessary in order to anticipate plant pathogens epidemics occurs in uniformly monoculture plants or natural ecosystems, for example, *Cercospora* leaf spot epidemic in southern

511

Germany, caused by *C. beticola* (Wolf and Verreet, 2005). In this context, anticipation of the threat of further epidemics in the future and recognition of disease control in such situation are very important, and these actions can only be prepared by studying the biology and diversity genetics of plant pathogens collected from the field and well-preserved.

Economically, benefits from study on plant pathogens biodiversity and conservation are numerous. Firstly, genetically defined collections of plant pathogens are essential to the process of revealing diversity and in selection for disease resistance in plant breeding. Secondly, pathogens may also be important as sources of novel drugs, for example Cercosporin, a non-host-selective perylenequinone toxin produced by many phytopathogenic Cercospora species, are now being investigated as antiviral agents and photodynamic tumor therapy (a process that utilizes photosensitizers and targeted laser irradiation to destroy tumors) (Daub and Ehrenshaft, 2000). Thirdly, plant pathogens or infected hosts may be good sources of novel fungicides, pesticides and herbicides. For example, Cercosporin are now also being investigated because their broad spectrum toxicity which are potential as bactericides, herbicides, insecticides (Daub and Ehrenshaft, 2000). Fourth, plant pathogens may produce or induce their hosts to produce chemical molecules which, although not of direct significance to the pharmaceutical or agrochemical industries, may be of indirect importance in producing chemical templates for novel bio-active molecules, for example chitinase production on leaves of sugar beet induced by C. beticola (Nielsen et al., 1993; ten Kate and Laird, 1999). Fifth, by surveying and collecting plant pathogens, widespread species and strains will be available, and it will significantly facilitate the sharing information among researchers and allow

inclusion of a high diversity of strains in genetic, taxonomic, fungicides resistance analysis, and pathogenicity test. Finally, it is important to end this section by making a point that is so obvious that as long as there is a need to control the devastating effects of pathogens on plants, there is an equal need to study in depth the ways in which pathogens interact with their hosts and with their environment at every level and the way that epidemics occur and develop, especially in natural and traditional agro-ecosystems. Only as a result of such research will it be possible to continue to develop effective strategies for the control of diseases into the future. For this reason alone, if for no other, it is essential that the diversity of plant pathogens is needed to conserve in appropriate ways. The challenge in this study is great, and it will take a concerted effort by plant scientists, mycologists, molecular taxonomists, and plant pathologists willing to engage in truly collaborative studies to unravel this fascinating subject.

5.5. References

Agrios, G. N. 2005. *Plant Pathology*. 5 th ed. Academic Press, New York, USA.
Aptroot, A. 2006. *Mycosphaerella* and Its Anamorphs: 2. Conspectus of *Mycosphaerella*. *CBS Biodiversity Series* 5. Utrecht, Netherlands.

Breeÿen, den A., Groenewald, J. Z., Verkley, G. J. M., and Crous, P. W. 2006. Morphological and molecular characterisation of *Mycosphaerellaceae* associated with the invasive weed, *Chromolaena odorata*. *Fungal Divers.* 23: 89-110.

Brown, A. H. D., Frankel, G. H., Marshall, D. R., Williams, J. T. 1989. *The Use of Plant Genetic Resources*. Cambridge: Cambridge University Press, England.

- Burgess, T. I., Barber, P. A., Sufaati, S., Xu, D., Hardy, G. E. StJ., and Dell, B. 2006. *Mycosphaerella* spp. on *Eucalyptus* in Asia; new species; new hosts and new records. *Fungal Divers.* 24: 135-157.
- Crous P. W. and Braun, U. 2003. *Mycosphaerella* and Its Anamorphs: 1. Names published in *Cercospora* and *Passalora*. *CBS Biodiversity Series* **1**. Utrecht, Netherlands.
- Daub, M. A. and Ehrenshaft, M. 2000. The photoactivated *Cercospora* toxin cercosporin: contributions to plant disease and fundamental biology. *Annu. Rev. Phytopathol.* 38: 461-490.

Deacon, J. 2006. Fungal Biology. 4th ed. Blackwell Publishing Ltd., Oxford, England.

Ellis, M. B. 1971. Dematiaceous Hyphomycetes. CMI, Kew, Surrey, England.

- FAO. 2000. The state of food insecurity in the world (SOFI). Rome, Italy: FAO, UN. www.fao.org/FOCUS/E/SOF100/sofi001-e.htm
- Giatgong, P. 1980. Host index of plant diseases of Thailand. Mycology Section, Plant Pathology and Microbiology Division, Department of Agriculture, Bangkok, Thailand.

 Goodwin, S. B., Dunkle, L. D., and Zismann, V. L. 2001. Phylogenetic analysis of *Cercospora* and *Mycosphaerella* based on the ITS region of ribosomal DNA. *Phytopathology* **91**: 648-658.

Hawksworth, D. L. 1991. The fungal dimension of biodiversity: magnitude, significance, and conservation. *Mycol. Res.* **95**: 641-655.

Hawksworth, D. L. 1993. The tropical fungal biota: census, pertinence, prophylaxis, and prognosis. In: *Aspects of Tropical Mycology* (eds. Isaac, S., Frankland, J.

C., Watling, R., and Whalley, A. J. S.), pp. 265-293. Cambridge University Press: Cambridge, England.

- Heywood, V. H. 1985. Flowering Plants of The World. Prentice-Hall: New Jersey, USA.
- Hunter, G. C., Wingfield, B. D., Crous, P. W., and Wingfield, M. J. 2006. A multigene phylogeny for species of *Mycosphaerella* occurring on *Eucalyptus* leaves. *Stud. Mycol.* 55: 147-161.
- Kate, ten K. and Laird, S. A. 1999. The commercial use of biodiversity. Earthscan, London, England.
- James, C. 1998. Global food security. *Abstr. Int. Congr. Plant. Pathol.*, 7th Edinburgh, England, Aug. No. 4.1GF. <u>http://www.bspp.org.uk/icpp98/4/1GF.html</u>
- Lenné, J. M. and Wood, D. 1991. Plant disease and the use of wild germplasm. *Annu. Rev. Phytopathol.* 29: 35-63.
- Newhook, F. J. and Podger, F. D. 1972. The role of *Phytophthora cinnamomi* in Australian and New Zealand forests. *Annual Review of Phytopathology* 10: 292–326.

Nielsen, K. K., Mikkelsen, J. D., Kragh, K. M., and Bojsen, K. 1993. An acidic class
III chitinase in sugar beet: induction by *Cercospora beticola*, characterization,
and expression in transgenic tobacco plants. *Mol. Plant Microbe Interact.* 6: 495-506.

Norman, S. M., Poling, S. M., Maier, V. P., and Orme, E. D. 1983. Inhibition of abscisic acid biosynthesis in *Cercospora rosicola* by inhibitors of gibberellin biosynthesis and plant growth retardants. *Plant Physiol.* **71**: 15-18.

- Petcharat, V. and Kanjanamaneesathian, M. 1989. Species of plant pathogen *Cercospora* in Southern Thailand. *Thai Phytopathol.* **9**: 23-27.
- Pirozynski, K. A. 1988. Coevolution by horizontal gene transfer: a speculation on the role of fungi. In: *Coevolution of fungi with plants and animals* (eds. Pirozynski, K.A. and Hawksworth, D. L.), pp. 247-268, Academic Press: London, England.
- Rossman, A. Y., Palm, M. E., and Spielman, L. J. 1987. A Literature Guide for the Identification of Plant Pathogenic Fungi. American Phytopathological Society, St Paul, Minnesota, USA.
- Shivas, R. G. and Hyde, K. D. 1997. Biodiversity of plant pathogenic fungi in the tropics. In: *Biodiversity of Tropical Microfungi* (eds. Hyde, K. D.), pp. 47-56, Hong Kong University Press: Hong Kong SAR (PR China).
- Sontirat, P., Phitakpraiwan, P., Choonbamroong, W., and Kueprakone, U. 1980. *Plant pathogenic Cercosporae in Thailand*. Department of Agriculture, Ministry of Agriculture and Cooperative, Bangkok, Thailand.
- Sontirat, P., Pitakpraivan, P., Khamhangridthrirong, T., Choonbamroong, W., and Kueprakone, U. 1994. *Host Index of Plant Diseases in Thailand*. Department of Agriculture, Ministry of Agriculture and Cooperatives, Bangkok, Thailand.
 Stewart, E. L., Liu, Z., Crous, P. W., and Szabo, L. 1999. Phylogenetic relationships

among some cercosporoid anamorphs of *Mycosphaerella* based on rDNA sequence analysis. *Mycol. Res.* **103**: 1491–1499.

Strange, R. N. and Scott, P. R. 2005. Plant disease: A threat to global food security. *Annu. Rev. Phytopathol.* **43**: 83-116.

- Ward, J. M. J., Stromberg, E. L., Nowell, D. C., and Nutter, Jr., F. W. 1999. Gray leaf spot: a disease of global importance in maize production. *Plant Disease* 83: 884-895.
- Wolf, P. F. J. and Verreet, J. A. 2005. Factors affecting the onset of *Cercospora* leaf spot epidemics in sugar beet and establishment of disease-monitoring thresholds. *Phytopathology* 95: 269-274.

Yuko, K., masataka, N., and Atsushi, S. 2002. *Cercospora* leaf spot epidemic in 2000. *Proceedings of the Japanese Society of Sugar Beet technologists* **43**: 71-77.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved