TABLE OF CONTENTS

09181918	
	Page
ACKNOWLEDGEMENT	iii
ENGLISH ABSTRACT	iv
THAI ABSTRACT	vi
LIST OF TABLES	xiv
LIST OF FIGURES	xvi
ABBREVIATIONS AND SYMBOLS	xviii
CHAPTER 1 INTRODUCTION	1
1.1 Overview	1
1.2 Objective of the study	5
1.3 Scopes of the study	5
CHAPTER 2 LITERATURE REVIEW	6
2.1 Non-starch polycaccharide	6
2.1.1 Definition and classification of non-starch	
polysaccharide	6
2.1.2 β-glucan	6
2.1.3 Grain structure	8
2.1.4 Mechanism of action	9
2.1.5 Viscous nature of soluble NSP	10
2.1.6 Modification of secretary response of the gut	S 12
2.1.7 Encapsulated nutrients	13
2.2 β-glucan-degrading enzymes	13
2.3 Solid-state fermentation	15
2.3.1 Effect of Carbon-source	17
2.3.2 Effect of nitrogen source	18
2.3.3 Effect of mineral	18

2.3.4 Effect of inoculum size	19
2.3.5 Effect of moisture level	19
2.3.6 Effect of incubation period	21
2.4 β -glucanase production	21
2.5 Evaluation of safety of enzymes supplement in feed	26
2.5.1 Aflatoxin	28
2.5.2 Ochratoxin	29
2.6 Why use enzymes in animal feed?	30
2.7 The current enzyme used in animal feeds	31
2.7.1 Fiber-degrading enzymes	31
2.7.2 Protein-degrading enzymes	31
2.7.3 Starch-degrading enzymes	32
2.7.4 Phytic acid-degrading enzymes	32
2.8 Presentation of Exogenous Enzymes to the Animal	34
2.9 Action of feed enzymes in the animal	35
2.10 Supplementing β -glucanase to animals	38
2.10.1 Effects to digestibility	38
2.10.2 Effect to villus size and the concentration of bile	
acids in the small intestine	42
AT INTERS	
CHAPTER 3 MATERIALS AND METHODS	
3.1 Instruments and chemicals and media	49
3.1.1 Instruments	49
adans U 3.1.2 Chemicals and allosoll	50
3.1.3 Media	53
CODYNGN 3.2 Microorganisms Man Onivers	53
3.3 Screening of β -glucanase producing strains	54
3.3.1 Culture maintenance	54
3.3.2 Inoculums culture	54
3.3.3 β -glucanase activity assay	54
3.3.4 Evolution of safety	55

ix

	3.3.4.1 Cytotoxicity test	55
	3.3.4.2 Aflatoxin test	55
	3.3.4.3 Ochratoxin test	55
	3.3.5 Proteolytic stability	55
	3.3.6 Resistance to heat	56
	3.4 Optimization of crude β -glucanase production	56
	3.4.1 Effect of carbon sources	56
	3.4.2 Effect of carbon sources to nitrogen source ratio	56
	3.4.3 Effect of media additive	57
6	3.4.4 Effect of moisture ratio	57
	3.4.5 Effect of inoculum size	57
224	3.4.6 Effect of time course profiles	57
305	3.5 Preservation of crude β -glucanase as dry powder	57
	3.6 Shelf-life of crude β -glucanase powder	57
C	3.7 Testing of enzyme quality by <i>in vitro</i> digestibility	58
E	3.8 β-Glucan analysis	58
	3.9 Testing effect of enzyme on production performance in pigs	59
	3.9.1 Experimental design	59
	3.9.2 Diets	59
	3.9.3 Animals, housing and management	59

CHAPTER 4 RESULTS

4.1 Screening of β-glucanase producing fungi	62
4.1.1 β-glucanase production	62
Copyright 4.1.2 Evolution of safety 4.1.2.1 Cytotoxicity test Univers	63 63
A I I I I I I I I I I I I I I I I I I I	64 64
4.1.3 Resistance to pH, heat treatment and proteolytic	
enzyme	66
4.1.3.1 Resistance to pH and proteolytic enzyme	66
4.1.3.2 Resistance to heat	67

Х

4.2 Optimization of crude β-glucanase production	69
4.2.1 Effect of carbon source on β -glucanase production	70
4.2.2 Effect of carbon sources to nitrogen source ratio	70
4.2.3 Effect of media additives	73
4.2.4 Effects of initial moisture content of medium	
on β -glucanase production	73
4.2.5 Effect of inoculum size and time course profiles	
β-glucanase production	75
4.3 Preservation of crude β -glucanase as dry powder	78
4.4 Shelf-life of crude β -glucanase powder	79
4.5 Other enzyme activity from Aspergillus sp. KPFC 277	79
4.6 Testing of enzyme quality by <i>in vitro</i> digestibility	82
4.7 β-glucan analysis	83
4.8 Effects of enzyme on production performance in pigs	83
CHAPTER 5 DISCUSSION	
5.1 Screening of β -glucanase producing microorganisms	86
5.1.1 β -glucanase production	86
5.1.2 Evolution of safety	87
5.1.2.1 Cytotoxicity test	87
5.1.2.2 Aflatoxin test	88
5.1.2.3 Ocharatoxin test	88
5.1.3 Resistance to pH, heat treatment and proteolytic	
	89
5.1.3.1 Resistance to pH and proteolytic enzyme	89
5.1.3.2 Resistance to heat	90
5.2 Optimization of crude β -glucanase production	91
5.2.1 Effect of carbon source on β -glucanase production	91
5.2.2 Effect of C: N ratio	93
5.2.3 Effect of media additives	93
5.2.4 Effects of initial moisture content on β -glucanase	
production	94

5.2.5 Effect of inoculum size and time course profiles	
on β -glucanase production	95
5.3 Preservation of crude β -glucanase as dry powder	96
5.4 Shelf-life of crude β -glucanase powder	96
5.5 Other enzyme activity from Aspergillus sp. KPFC 277	97
5.6 Testing of enzyme quality by in vitro digestibility	97
5.7 β-glucan analysis	98
5.8 Testing effect of enzyme on production performance in pigs	98
CHAPTER 6 CONCLUSION	100
BIBLIOGRAPHY	102
APPENDICES	
APPENDIX A Media, Buffer and Experimental Diets	118
A-1. Media	
A-1.1. Potato dextrose agar (PDA)	118
A-2. Buffer solution	
A-2.1. 0.2 M Citrate phosphate buffer	
(pH 3.0 and 7.0)	118
A-2.2. 0.1 N glycine-HCl buffer pH 3.2	118
A-2.3. 0.1 M phosphate buffer (KH_2PO_4 -NaOH)	110
ลิ่มสิทธิ์แหก่อิุทร์กลัยเซียงไ	118
A-2.4. 0.1 M Phosphate buffer pH 6.0	119
A-2.5. 0.2 M Phospater buffer pH 6.8 APPENDIX B Analytical methods	119 120
B-1. Cytotoxicity test B-2. Aflatoxin test	120 121
B-3. Ochratoxin test	121
B-4. Activities profiles	
B-4.1. Amylase activity assay	122
B-4.2. Cellulase activity assay	123

	B-4.3. Pentosanase activity	124
	B-4.4. Phytase	125
	B-4.5. Protease activity assay	126
B-5.	Proximate analysis	
9	B-5.1. Dry matter	126
	B-5.2. Crude protein	127
	B-5.3. Crude fiber	128
	B-5.4. Ash	129
8	B-5.5. Ether extracts	130
	B-5.6. Nitrogen free extracts	130
B-6.	Glucan analysis	131
В-7.	In vitro digestibility	132
APPENDIX C Stati	stical analysis	135
	T	
CIRRICULUM VITAE		142
E		
		'
	SIT	
	17 INTIVERS	
	UNIVE	
_		
		2

ลิขสิทธิ์มหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table	2212121 A	Page
1.1	Growth performance in broiler an overview of the published studies	4
2.1	Average β-glucan content of cereal grain	8
2.2	Effect of higher molecular weight NSP, partially depolymerized	
	NSP and pentoses on weight gain, feed conversion ratio, feed intake	
	and apparent metabolizable in broilers	11
2.3	Substrate for the assay of cellulase and β -glucanase	15
2.4	Summarizes the literature available on by-products that can be used	
	in enzyme production to apply on animal nutrition	20
2.5	Detection of toxin in animal feed and grain by Elisa kit	27
2.6	Feed enzymes in use today.	33
2.7	Enzyme efficacy: digestibility and production performance	40
2.8	Effects of β -glucanase supplementation on ileal and fecal	
	digestibilities (%) of dry matter, organic matter, crude protein, gross	
	energy, β -glucan, and amino acids in the hulless barley + soybean	
	diet	41
2.9	Effects of adding enzyme preparations on apparent ileal and overall	
	digestibilities (%) and hindgut fermentation (HF, %) of dry matter,	
ຄີບສີາ	gross energy, crude protein, neutral detergent fiber and ileal total	
2 10	Histological measurement of the ileal wall in broiler chickens fed	
Copyr	corn or rye based diets supplemented or not with enzyme	SIT ₄₃
2.11	Bile acid concentrations (mg/g of freeze-dried content) in the small	e d
	intestinal contents of broiler chickens fed corn or rye based diets	
	supplementor not with enzyme	44

xiv

Table		Page
3.1	Fungal strains used in this study	53
3.2	Composition of the weaning diets for productive performance	
	experiment	60
3.3	Chemical analysis (%) of the weaner diets for productive	
	performance experiment	60
4.1	The percentage of survival of baby hamster kidney (BHK) and	
	human hepatocyte cell line (HepG2) with extracted samples of	
	microorganism	63
4.2	Level of aflatoxin in extracted samples by ELISA test kit	65
4.3	Level of ochratoxin in extracted samples by ELISA test kit	65
4.4	β-glucan contents of raw materials and diets.	83
4.5	Growth performance of piglets offered diets with and without	
	enzymes.	84
4.6	Illness rate and mortality rate of piglets offered diet with or without	
	enzymes.	85
	AT INTVER	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure	2318126	Page
1.1	Quantitative and value of barley and wheat imports	2
1.2	Effect of β -glucanase supplementation on wet excreta output	3
1.3	Effect of rye and enzyme concentration of gut viscosity	4
2.1	Chemical structure of β-glucan	7
2.2	Structure of the barley grain	9
2.3	β -glucan structure and enzymes cleave within the main chain of	
S.C.	mixed-linkage β-glucan	14
2.4	The plots of β -glucanase production by <i>B. subtilis</i> ZJF-1A5 with	
	different carbon sources	22
2.5	Effects of nitrogen sources on the β -glucanase production by	
	B.subtilis ZJF-1A5.	23
2.6	Screening for lichenase induction in B. subtilis crsA47 by agro	
	industrial by-products	24
2.7	Screening for fermentable agro-industrial by-products served	
	mainly as nitrogen sources for lichenase production by B. subtilis	
	crsA47	25
2.8	Effect of lemon peel-cotton seed meal ratio on lichenase formation	
628	and protein secretion by <i>B. subtilis</i> crsA47	25
C O 2.9	Effect of substrate concentration on lichenase formation and protein	nIJ
Convri	secretion by <i>B. subtilis</i> crsA47	26
2.10	Relationship between the rate of digestion of a diet and microbial	511
	population density. A rapidly digestible ration supports fewer	e d
	microbes.	36

Figure		Page
2.11	Influence of enzyme addition on total ileal microbial counts	46
3.1	Pen dimension of 2.0 x 2.0 m which had slotted floors, two nipple	
	drinkers and a feed trough.	61
4.1	β -glucanase productions at pH 3.0 and 7.0 of 11 fungal strains.	62
4.2	Stability of β -glucanase produced from Aspergillus sp. KPFC 919	
	Aspergillus sp. KPFC 947 and Aspergillus sp. KPFC 277 at low pH	
	with pepsin and neutral pH with pancreatin.	66
4,3	Thermal stability of β -glucanase produced by <i>Aspergillus</i> sp. KPFC	
G	919 Aspergillus sp. KPFC 947 and Aspergillus sp. KPFC 277 after	
	incubation at 75 °C for 2 and 5 min	68
4.4	Effects of carbon source on β -glucanase production by Aspergillus	
	sp. KPFC 277 in solid-state fermentation	71
4.5	Effect of carbon source to nitrogen source ratio on β-glucanase	
	production by Aspergillus sp. KPFC 277 in solid-state fermentation	72
4.6	Effect of media additives on β -glucanase production by Aspergillus	
	sp. KPFC 277 in solid-state fermentation	74
4.7	Effect of medium to moisture ratio on β -glucanase production by	
	Aspergillus sp. KPFC 277 in solid-state fermentation	76
4.8	Effect of inoculum size on β -glucanase production by Aspergillus	
	sp. KPFC 277 in solid-state fermentation	77
4.9	Effect of carriers on activity of β -glucanase produced by	
22.	Aspergillus sp. KPFC 277	78
4.10	Effect of temperature, time and oxidation on β -glucanase activity of	
· ·	crude enzyme from Aspergillus sp. KPFC 277 at pH 3.0 and 7.0	•
Copyri	during storage 0-12 week at Refrigerator (4°C), Room temperature	SITY
	(25°C) and car temperature (45°C).	80
4.11	Other enzyme activity from Aspergillus sp. KPFC 277	81
4.12	In vitro digestibility of β -glucan in barley, oat and wheat bran	82
4.13	Growth performance of piglets given diets with or without enzymes	85

xvii

ABBREVIATIONS AND SYMBOLS

Abbreviation or symbol	Term
%	percent
=	is equal to
<	is less than
>	is greater than
μ	mieron
°C	degree centigrade or Celsius
μg	microgram
	micro liter
/	per
+	plus
AA	amino acid
ADFI	average daily feed intake
ADG	average daily gain
AME	apparent metabolizable energy
ANFs	anti-nutritional factors
ANOVA	analysis of variance
AOAC	Association of Official and Analytical Chemists
APD ne likon	apparent protein digestibility
CIUBIOTEC D'UII J	National center for Genetic Engineering and
Copyright [©] by C	Biotechnology body weight
Ac right	carbon reserved
CAFOs	concentrated animal feeding operations
CF	crude fiber
CFU	colony-forming units
cm	centimeters
Co., Ltd.	Company Limited

CO_2	carbon dioxide gas
Con	control
СР	crude protein
CRD	completely randomized design
df	degree of freedom
DM	dry matter
DMRT	Duncan's new multiple range tests
DNS	dinitrosalicylic acid
e.g.	exempli gratia (for example)
ed.,eds.	Editor (s)
EDTA	ethylene diamine tetra acetic acid
EE	ether extract
et al.	Et alii (Latin), and other (s)
F	F-values
FAO	Food and Agricultural Organization
FCR	feed conversion ratio
FDA	Food and Drug Administration
FTU	phytase unit
g	gram
h	hour
IU	international unit
kg	kilogram
adansung	Crude β-glucanase from <i>Aspergillus</i> sp. KPFC 277
Copyright [©] by C	hear Mai University
A M right	molar r e s e r v e d
min.	minute
MJ	mega joule
ml	milliliter

xix

mm	millimeter
MS	mean square
MTT	3-(4, 5-dimethylthiazoyl-2-yl) 2, 5
	diphenyltetra-zolium bromide
η	nano
N	nitrogen
NA	nutrient agar
NB	nutrient broth
ND	not determined
NDF	neutral detergent fiber
NFE	nitrogen free extract
NRC	National Research Council
NSP	non starch polysaccharide
NSTDA	National Science and Technology development
Q	Agency
O_2	oxygen gas
OD	optical density
Р	Probability
рН	negative logarithm of hydrogen ion activity
ppm	parts per million
rpm	rounds per minute
S.D.	standard deviation
SBM	soybean meal
C Sp., spp. D	Species COLOCOLINU
SPSS	the Statistical Package for Social Science
syngin	sum of square
SSF	solid-state fermentation e r v e o
TCA	• trichloroacetic acid
v/v	volume by volume
v/w	volume by weight
W/V	weight by volume
W/W	weight by weight

XX