xiv

Table of Contents

	Page
Acknowledgements	iv
Abstract (English)	vi
Abstract (Thai)	x
Table of Contents	xiv
List of Tables	xvii
List of Illustrations	xix
Abbreviations and Symbols	xxiii
Chapter 1 General Introduction	1
Chapter 2 Literature Review	6
2.1 Groundnut or Peanut	6
2.1.1 Botany	785
2.1.2 Ecology	11
2.1.3 Cultivation and management	12
2.2 Aspergillus flavus associated with aflatoxin production	13
2.2.1 Aspergillus flavus	13
2.2.2 Aflatoxins	16
2.3 Mechanism of plant resistance to pathogens	21
2.3.1 Passive defense mechanisms	22
2.3.1.1 Preformed structure barriers	23
2.3.1.2 Preformed biochemical compounds	24
2.3.2 Active defense mechanisms	28
2.3.2.1 Induced structural barrier	28
2.3.2.2 Induced biochemical responses	30
2.4 Breeding for resistance	39
2.4.1 The gene-for-gene hypothesis	39
2.4.2 Variable system of plant-pathogen interaction	42
2.4.3 Genetic resources for resistance	45
2.4.4 Methods used in breeding for resistance	46
2.4.5 The use of resistant cultivars	50

Chapter 3 Screening Pro	ocedures	52	
3.1 Introducti	ion	52	
3.2 Materials	and methods	53	
(A	AFHS) method 3.2.1.1 Preliminary finding	53 53	
	3.2.1.2 Preparation of suspension of <i>Aspergillus flavus</i>	56	
	3.2.1.3 Source of seeds	56	
	3.2.1.3 Post-harvest determination	57	
	3.2.1.4 Preharvest determination	58	
	g screening method	60	
	3.2.2.1 Optimum time for surface sterile	60	
	3.2.2.2 Appropriate time after inoculation for assessing resistant genotypes by peg screening method	61	
300	3.2.2.3 Appropriate time after inoculation for assessing resistant genotypes by AFHS technique	62	
3.2.3 Se	ed screening method	63	
3	3.2.3.1 Optimum time for surface sterile	63	
	3.2.3.2 Appropriate time after inoculation for assessing resistant genotypes by seed screening method.	63	
3.3 Results		65	
(A	niline blue fluorescence and hematoxylin staining AFHS) method	65	
3.3.2 Pe	g screening method	69	
3	3.3.2.1 Optimum time for surface sterile	69	
8 48 48	3.3.2.2 Appropriate time after inoculation for assessing resistant genotypes by peg screening method	70	
	3.3.2.3 Appropriate time after inoculation for assessing by AFHS technique	72	
	ed screening method	75	
3	3.3.3.1 Optimum time for surface sterile	75	
A I I r	3.3.3.2 Appropriate time after inoculation for assessing resistant genotypes by seed screening method	76	
3.4 Discussion		79	

xvi

g	Genotypic variation for resistance to Aspergillus flavus of roundnut germplasms	83
4.	.1 Introduction	83
4.	.2 Materials and Methods	85
	4.2.1 Source of groundnut genotypes	85
	4.2.2 Pre-harvest determination: Peg screening method	85
	4.2.3 Post-harvest determination: Seed screening method	88
	4.2.4 Minerals analysis in groundnut peg and seedcoat	88
	4.2.5 Tannins analysis in groundnut peg and seedcoat	90
4,	.3 Results	91
	4.3.1 Pre-harvest determination	91
	4.3.2 Post-harvest determination	101
4.	4 Discussion	109
Chapter 5 In	nheritance of Aspergillus flavus Resistance In Groundnut	112
5.	.1 Introduction	112
5.	2 Materials and Methods	114
	5.2.1 Groundnut germplasms and screening	114
	5.2.2 Statistic analysis	115
	5.2.2.1 Analysis of variance	115
	5.2.2.2 Combining ability analysis	116
5.	3 Results	118
	5.3.1 Analysis of variance5.3.2 Combining ability of <i>Aspergillus flavus</i> infection pegs by peg screening method and AFHS method	118 121
5.4 Discussion Chapter 6 General Discussion		125 129
Se	creening methods	129
\mathbf{Cov}	ariation of resistance to Aspergillus flavus	131 SITY -
In	heritance of resistance to Aspergillus flavus	135
Reference		139
Curriculum	Vitae	156

xvii

List of Tables

Table	Description of Table	Page
2.1	Oral acute toxicity LD_{50} value of aflatoxin B_1 for anumber of animal species	19
2.2	Interspecies differences in liver cancer induction by aflatoxin B ₁ ingestion (Wogan, 2000)	19
2.3	A selection of maximum tolerated levels of aflatoxin B_1 in food (Moss, 2002)	20
3.1	Dehydrate and transfer to paraffin using TBA as the intermediate solvent, 1 night / step.	58
3.2	Percentage of Aspergillus flavus fluorescence in seed coat tissues after staining with aniline blue fluorescence and hematoxylin and	67
	separate the fluorescent position by Quacos program	
3.3	The percentage A. flavus contamination after varies time for surface sterile pegs by 3 % sodium hypochlorite in J ₁₁ and Tainan9 groundnut genotypes	70
3.4	Percentage of contaminated peg after vary the incubation times (days) from 0 to 15 days of six groundnut genotypes	72
3.5	Percentage of infected peg area fluorescence after vary the incubation times (days) of six groundnut genotypes	74
3.6	Percentage of contaminated seed after surface sterilized by 3 % sodium hypochlorite of J11 and Tainan9 groundnut genotypes.	76
3.7	Percentage of contaminated seed after vary the incubation times (days) of 11 groundnut genotypes	78
4.1	Groundnut genotypes reaction to colonization by Aspergillus flavus and obtainable source	86
4.2	Percentages and Resistant Rate of groundnut pegs contaminated by	92
	Aspergillus flavus under uninoculation and inoculation conditions	iversity -
4.3	Percentage of pegs infection and area fluorescence of peg tissue of 43 groundnut genotypes	94/ e d
4.4	Concentration of calcium (Ca), copper (Cu), magnesium (Mg),	97
	manganese (Mn), ion (Fe), zinc (Zn) and total tannins content in groundnut peg	

Table	Description of Table	Page
4.5	Percentages and Resistant Rate of groundnut seed contaminated by	103
	Aspergillus flavus under uninoculation and inoculation conditions	
4.6	Percent infected seed, calcium, copper, magnesium and total tannins	106
	content in seedcoat of groundnut genotypes	
5.1	Analysis of variance for Method 2 giving expectation of mean square	116
	for the assumptions of Model II	
5.2	Percentage of infected peg of 5 parents and their F1 using peg	120
	screening and AFSH method	
5.3	Analysis of variance of groundnut peg resistance t o Aspergillus	121
	flavus infection by peg screening method	
5.4	Diallel crosses: percent-infected peg by A. flavus using peg screening	121
	method Griffing's combining ability, Method II, Random Model	
5.5	Analysis of variance of groundnut peg resistance t o A. flavus	122
	infection by AFHS method	
5.6	Diallel crosses: percent-infected peg area fluorescence by A. flavus	122
	using AFHS method Griffing's combining ability, Method II,	
	Random Model	
5.7	Estimates of general combining ability (GCA) of percent-infected	123
	pegs by peg screening method and percent-infected pegs area	
	fluorescence by AFHS method	
5.8	Estimates of general combining ability (GCA), specific combining	124
	ability (SCA) and percent-infected pegs area fluorescence by AFHS	
	method based on diallel analysis	
5.9	Estimates of general combining ability (GCA), specific combining	125
	ability (SCA) of percent-infected pegs by peg screening method	
	based on half-diallel analysis	
6.1	Correlation coefficient of percent infection with calcium and tannins	132
	in seedcoat and peg of groundnut	

List of Illustrations

Figure	Description of Figure	Page
2.1	Groundnut center of origin (solid line), area of intensive cultivation (dotted line) and areas of maximum cultivation (shaded) (Weiss, 2000)	6
2.2	Groundnut harvest area, yield and production trend in the world since 1961 to 2001 (FAO, 2003)	7
2.3	World area of groundnut production in year 2003 (FAO, 2003)	7
2.4	World production of groundnut in year 2003(FAO, 2003)	8
2.5	Groundnut plant	9
2.6	Compound leaves (A), flower (B), and pegs structure(C), pods (D) and seed color (E) of groundnut	10
2.7	Colonies of Aspergillus flavus on M3S1B selective medium	14
2.8	Conidiophores (A), conidial head (B) and conidia (C) of Aspergillus flavus	14
2.9	The aflatoxins biosynthesis pathway (Bennett et al., 1994)	17
2.10	Classification of types of plant defence, based on existing anatomical or biochemical features, or active changes induced after challenge by pathogens (Lucus, 1998)	22
2.11	Vertical sections through leaf tissue to show the arrangement of cell and intercellular spaces (Isaac, 1992)	24
2.12	Distribution and relative concentration of each cell-wall component in the mature cell wall (Huang, 2001)	26
2.13	Chemical structures of some phenolic compounds that are induced in plants as a response to fungal attraction	32 Vers
2.14	Signal molecules implicated in the induction of plant defense, systemin, salicylic acid, acetylsalicylic acid and dichloroisonicotinic (DCINA)	33

Figure	Description of Figure	Page
2.15	The stages of morphological and physiological change occurring during development of the hypersensitive response of plant cells and the possible role of constitutive elicitors in phytoalexin	35
	accumulation (Issac, 1992)	
2.16	Quadratic check of gene combinations and the resulting different interaction types in gene-for-gene interaction (Keller et al., 2000)	41
2.17	Molecular model of the gene-for-gene interaction (Keller et al., 2000).	43
2.18	Vertical (A) and horizontal (B) resistance	44
3.1	Long-section by hand of groundnut embryos after flowering 3 days, A; under normal light and B; under UV light microscope	54
3.2	Cross (A.) and long (B.) section by rotary microtrome and stained with hematoxylin of groundnut embryos under normal light microscope	54
3.3	Long-section of groundnut flower after stained with aniline blue (A.) and safanin O (B.) and groundnut embryos after stained with aniline blue (C.) and Hematoxylin (D.) under UV light microscope	55
3.4	The 10 days Aspergillus flavus growth on M3S1B selective medium	56
3.5	Infected seedcoat of groundnut by Aspergillus flavus were cut	57
3.6	Inoculated pegs were incubated in growth chamber at 30 °C and 100 % relative humidity	59
3.7	Inoculated pegs on M3S1B selective medium under normal light (A) and UV light (B)	61 7
3.8	Inoculated seeds on M3S1B selective medium under normal light (A) and UV light (B)	64 Versity
3.9	The hyphae (H), conidia (C) and conidiophores (CP) of Aspergillus flavus under normal light (A) and UV light (B) microscope	65 e

Figure	Description of Figure	Page	
3.10	Infected seed coats after staining with aniline blue fluorescence and	66	
	hematoxylin of J_{11} (A) and Tainan9 (B) under normal light and		
	under UV light of J ₁₁ (C) and Tainan9 (D), outer epidermis (OE),		
	inner epidermis (IE), Aspergillus flavus fluorescence (AF) and dark		
	plant position (DP)		
3.11	Cross section of groundnut pegs and stained with aniline blue	68	
	fluorescence and hematoxylin under UV light microscope,		
	Aspergillus flavus infected positions: AI, vascular bundles: VB		
	and embryo: EM		
3.12	Percent infection by Aspergillus flavus of J ₁₁ and Tainan9 groundnut	69	
	genotypes under inoculation and uninoculation condition		
3.13	The effects of incubation time after inoculation to percent-infected	71	
	pegs by Aspergillus flavus in six groundnut genotypes		
3.14	The effects of incubation time after inoculation to percent-infected	73	
	peg area fluorescence by Aspergillus flavus in six groundnut		
	genotypes		
3.15	Percentage of groundnut seed contaminated by Aspergillus flavus	75	
	after varies the time for surface sterile by 3 % sodium hypochlorite		
	under uninoculation and inoculation treatments		
3.16	The effects of incubation time after inoculation to percent-infected	77	
	seeds by Aspergillus flavus in eleven groundnut genotypes		
4.1	Inoculated seeds on M3S1B selective medium under normal light	89	
	(A) and UV light (B)		
4.2	Percentages of groundnut peg contaminated by Aspergillus flavus	91	
	under uninoculation and inoculation conditions		
4.3	The correlation of percent peg infection with calcium (Ca)	100	
	concentration in groundnut aerial pegs and soil pegs		

Figure	Description of Figure	Page
4.4	Percentages of groundnut seed contaminated by Aspergillus flavus	102
	under uninoculation and inoculation conditions	
4.5	The correlation of calcium (Ca) and total tannins (Tannins)	108
	concentration of groundnut seed coat with percent seed infection	
6.1	Correlation of percent seed infection with calcium and tannins in	132
	seedcoat and peg of groundnut	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

xxiii

Abbreviations

AA Atomic absorption

AFHS Aniline blue fluorescence and hematoxylin staining

Ca Calcium

CT Condensed tannins

Cu Copper

Fe Iron

GCA General combining ability

GFP Green fluorescence protein

GUS β-glucuronidase

HS Highly susceptible

Mg Magnesium
Mn Manganese

MR Moderate resistance

R ResistanceS Susceptible

SCA Specific combining ability

UV Ultraviolet

Zn Zinc

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved