APPENDIX
Appendix 1. Source Codes of Limbukha Model
1. step:t
“Simulation”

self theFarmers do:
[:a| arelease.
a decideCropSuccession].
self theMarkets first init. S
self theRains first init.
(self theFarmers select: [:a | a myCropSuccession name = "potatoRice'])
do: [:b | b plantPotato].
self theVillages do: [:a | a updateWaterShare].
self theFarmers do: [:a | a calculateWaterLabor].
(self theFarmers select: [:a | a waterToBeExchanged > 0]) do:
[:b | b kinship notEmpty
ifTrue:
{self halt.
b sendInKinship]].
self theFarmers do: [:a | a consultMailBox].
self theFarmers do:
[b]
b definePeopleToAsk.
b exchange Water].
{(self theFarmers
select: [:a{a waterToBeExchanged < 0 and: {a peopleToAsk isEmpty not]])
size > 0]
whileTrue: {self theFarmers do: [:a | a exchangeWater]].
self theFarmers do: [:a | a plantRice].
self halt.
self theFarmers do: [:a | a harvestPotato].
self theRains first init.
self theVillages do: [:a | a updateWaterShare].
self theFarmers do: [:a | a calculateWaterSecondCycle].
(self theFarmers select: [:a | a waterToBeExchanged > 01)
do: [:b| b kinship notEmpty ifTrue: [b sendInKinship]].
self theFarmers do: [:a | a consuitMailBox}.
self theFarmers do:
[:b]
b definePeopleToAsk.
b exchangeWater].

[(self theFarmers
select: [:a | a waterToBeExchanged < 0 and: [a peopleToAsk isEmpty not]])

135

size > 0]

whileTrue: [self theFarmers do: [:a | a exchangeWater]].
self theFarmers do: [:a | a plantRice].
self halt.
self theFarmers do:

[:al

a harvestRice.

a sellProduction]

2. decideCroppingPattern
“Decide the crop sequence based-on rainfall pattern and market state”

self myCroppingPattern: CroppingPattern new.
(self myVillage id = 1 and:
[self myMarket marketState = #high
and: [self myVillage myRain rainState = #high]])
ifTrue: [self myCroppingPattern name: ‘potatoRice']
ifFalse: [self myCroppingPattern name: 'rice'].
self defineVisualState decideCroppingPattern
self myCroppingPattern: CroppingPattern new.
(self myVillage id = 1 and:
[self myMarket marketState = #high
and: [self myVillage myRain rainState = #high}])
ifTrue: [self myCroppingPattern name: 'potatoRice']
ifFalse: [self myCroppingPattern name: 'rice'].
self defineVisualState

3. plantPotato

“Plant potato and update the income”
| counter ¢ |
counter := 0.
self myField components do: [:a | counter <3
ifTrue:
[c := Crop new.
¢ cropType: 'potato’.
¢ isMovedTo: a.
counter := counter + 1.
self myIncome: self myIncome - 5200]]

4. calculateWaterLabor
“Calculate number of labor and water units available for sharing”

self laborToBeExchanged: self myLabor.
self waterToBeExchanged: self myWater.

136

self myField components do: [:a | a crop isEmpty
ifTrue:
[self laborToBeExchanged: self laborToBeExchanged - 20.
self waterToBeExchanged: self waterToBeExchanged - 1]].
self laborExchanged: 0.
self waterExchanged: 0

5. plantRice
“Plant rice and update income”

icwl]|
w = self myWater + self waterExchanged.
1 := self myLabor + self laborExchanged.
self myField components do:
[:a]
(a crop isEmpty and: [w > @ and: [1 >=20]])
ifTrue:
{c := Crop new,
¢ cropType: 'rice'.
¢ isMovedTo: a.
wi=w-1,
1:=1-20.
self myIncome: self mylncome - 2300]]
6. harvestPotato

“Harvest potato and update potato production”

fyieldpecl
self myVillage myRain rainState = #high ifTrue: [yield := 2200].
self myVillage myRain rainState = #low ifTrue: [yield := 700].
p := self myField components select: [:a | a crop isEmpty not and: [a crop first
cropType = 'potato']]. p
do:
[a]

¢ = a crop first.

¢ leave.

self myPotatoProduction: self myPotatoProduction + yield]
7. harvestRice

“Depending on the rainstate inform the yield. harvest rice and update rice
production”

| yieldpc|
self myVillage myRain rainState = #high ifTrue: [yield = 600].
self myVillage myRain rainState = #low ifTrue: [yield := 400].

137

p = self myField components select: [:a{a crop isEmpty not and: [a crop first
cropType = "rice']].
p do:
[-a|
¢ :=a crop first.
¢ leave.
self myRiceProduction: self myRiceProduction + yield]

8. sellProduction

“Sell potato, rice and update income”

self
mylIncome: self myIncome
+ (self myPotatoProduction * self myMarket pricePotato)
+ (self myRiceProduction * self myMarket priceRice)
Exchanges (Message)

9. askWaterAcquaintances
" select someone among the acquaintances and send a message to request water"

| waterRequested m a |

a = peopleToAsk first.

waterRequested := self waterToBeExchanged abs.
m = Exchange new.

m sender: self.

m receiver: a.

m symbol: #waterRequest.

m amount: waterRequested.

self sendMessageAsynchronously: m.
peopleToAsk remove: a

10. consultMailBox
“check mailbox for messages and pay money or cash for water requested”
self mailBox do:
[:a]
"self id = 6 ifTrue: [self halt]."
a symbol = #waterGiven ifTrue: {self messageWaterGiven: a].
a symbol = #waterRequest ifTrue: [self messageWaterRequest:

a symbol = #laborRequest ifTrue: [self messageLaborRequest:

a symbol = #moneyRequest if True: [self
messageMoneyRequest: al.

138

a symbol = #labor if True: [self messagel.abor: a].
a symbol = #money ifTrue: [self messageMoney: a]].
self mailBox: OrderedCollection new

11. definePeopleToAsk

“ Identify people to ask water from the list of acquaintances only and send
message”

self waterToBeExchanged <0
ifTrue:
[peopleToAsk := Cormas
mixt: (self acquaintances select: [:a | (self kinship includes: a)

not])|
ifFalse: [peopleToAsk := OrderedCollection new]

12. exchangeWater
“Ask water to acquiantance if water is needed”

self mailBox isEmpty
ifFalse: {self consultMailBox]
ifTrue:
[(self waterToBeExchanged < 0 and: [self peopleToAsk
isEmpty not])
ifTrue: [self askWaterAcquaintances]|

13. messageLabor: a
“Calculate labor for exchange and send message”
self laborToBeExchanged: self laborToBeExchanged + a amount
14. messagel.aborRequest: a
“Receive labor, pay wage and update the income”
| m|

self waterToBeExchanged: self waterToBeExchanged + a amount.
self waterExchanged: self waterExchanged + a amount.
self laborToBeExchanged > 0

ifTrue:

[m := Exchange new.

m sender: self.

m receiver: a sender.

m symbol: #labor.

139

m amount: a amount.
self laborToBeExchanged: self laborToBeExchanged - a amount]
ifFalse:
[m ;= Message new.
m sender: self.
m receiver: a sender.
m symbol: #money.
m amount: 100 * a amount.
self myIncome: self myIncome - (100 * a amount})].
self sendMessageAsynchronously: m

15. messageMoney: a
“Receive cash and update income”
self myIncome: self mylncome + a amount
16. messageMoneyRequest: a
“Send message about the cost of each water unit”
|m|
self waterToBeExchanged: self waterToBeExchanged + a amount.
self waterExchanged: self waterExchanged + a amount.
self mylncome: self mylIncome - (100 * a amount).
m := Exchange new.
m sender: self.
m receiver: a sender.
m symbol: #money.
m amount: 100 * a amount.
self sendMessageAsynchronously: m
17. messageWaterGiven: a

“Update water available for exchange”

self waterExchanged: self waterExchanged + a amount.
self waterToBeExchanged: self waterToBeExchanged - a amount

18. messageWaterRequest: a
“Message water received and money paid”
| m waterGiven |

self waterToBeExchanged > 0
ifTrue:

140

[m := Exchange new.
m sender: self.
m receiver: a sender.
waterGiven := self waterToBeExchanged min: a amount.
self waterExchanged: self waterExchanged - waterGiven.
self waterToBeExchanged: self waterToBeExchanged - waterGiven.
self laborToBeExchanged < 0
ifTrue:
[m symbol: #labourRequest.
m amount: waterGiven]
ifFalse:
[m symbol: #moneyRequest.
m amount: waterGiven].
self sendMessage Asynchronously: m]

19. sendInKinship
“Send message to give water to kinship in turns”

| receivers waterGiven m |
receivers := self kinship select: [:a | a waterToBeExchanged < 0].
receivers do:
[:a|
self waterToBeExchanged > 0
ifTrue:
[waterGiven := self waterToBeExchanged min: a waterToBeExchanged abs.
m := Exchange new.
m sender: self.
m receiver: a.
m symbol: #waterGiven.
m amount: waterGiven.
self sendMessage A synchronously: m]]

141

Appendix 2. Rainfall pattern used in Limbukha model.

Dominantly low rainfall pattern

Dominantly normal rainfall pattern

1 Time step =2 Cycles’

= 60% of the Cycle < 112mm/month
= 40% of the Cycle > 255mm/month
= 60% of the Cycle > 255mm/month
= 40% of the Cycle < 112mm/month

Cycle 1 = January to Mid-June
Cycle 2 = Mid-June to December

Average rainfall days (1985-2001)

Months
T F M| A | M| T T TAaTS
gamyz 1 5 71 9 11512 | 19 15
ays

Average rainfall per day:

Rainfall pattern used in Limbukha model

=7 mm day”' (normal rainfail) and
=3.5mm day'1 (low rainfall)

Time Steps ~ R1=Dominantly Low | R2 = Dominantly High
Cycle 1 Cycle 2 Cycle | Cycle 2
1 Low Low Normal Low
2 Low Normal Low Normal
3 Normal Low Normal Low
4 Low Normal Low Normal
5 Low Normal Normal Low
6 Low Low Normal Low
7 Low Normal Normal Normal
8 Normal Low Normal Low
9 Normal Normal Normal Normal
10 Low Normal Low Normal
11 Low Low Low Low
12 Normal Low Normal Low
13 Low Normal Normal Low
14 Low Low Normal Normal
15 Normal Low Normal Low
16 Low Normal Normal Low
17 Low Low Low Low
18 Low Normal Low Normal
19 Normal Low Normal Low
20 Low. Normal Low Normal

142

Appendix 3. Data generated from 36 scenarios of Limbukha Model

Network

Rainfall pattern + Protocol

11 12 13 14 15 16 21 22 23 24 25 26
Units of unused trrigation water
N1 6.7 3 1 68 68 45 73 3 I 66 7.1 4.05
N2 73 73 11 69 3 0 33 1.2 3 3 06
N3 6.9 6.35 0 75 3 0 74 3 0.2 3 3 3
Units of water exchanged
N1 0 0 0 0 0 0 0 O 0 0 0 0
N2 ¢ 08 0 0 0 0 0 04 0 0 0 0
N3 0 22 1.6 235 0 0 0 04 26 0 0 0
No. of plots planted with potato
N1 6 9 9 6 6 9 11 8 6 5 9 7
N2 11 11 9 7 7 6 6 6 10 9 8 5
N3 7 9 6 8 9 6 11 8 11 10 6 10
No. of plots planted with rice
N1 59 42 46 59 59 63 59 42 46 59 59 63
N2 59 59 65 59 42 48 42 42 65 42 42 65
N3 59 58 64 53 42 48 59 42 63 42 42 42
Annual income (US$)
NI 141 6.0 65 154 154 174 176 60 58 140 169 17.0
N2 186 176 17.7 152 55 61 56 59 193 6.1 6.1 148
N3 156 167 160 142 62 62 191 58 206 63 54 63
Notes:
N;: Only among kinship

: Among all members of same village (first with kinship and then with acquaintances)
: Among members of both the villages (all kinship and acquaintances)
: Dominantly Low + Exchange water only with kinship

: Dominantly Low + Exchange water against labor and cash

: Dominantly Low + Exchange water with kinship and Exchange labor against cash
: Dominantly Low + Exchange water free of charge
: Dominantly Low + Exchange labor against water
: Dominantly Low + P+ P, + P;

: Dominantly High + Exchange water only with kinship

: Dominantly High + Exchange water against labor and cash
: Dominantly High + Exchange water with kinship and Exchange labor against cash
: Dominantly High + Exchange water free of charge
: Dominantly High + Exchange labor against water
: Dominantly High + P, + P, + P4

CBNRM
CIRAD

CORMAS
CPR

DYT
GYT

ha

IDRC
ITWMI

Ls’!
MAS
MoA
MoHA
NRM
Nu.

PCS
RGOB
RNRRC
RPG

t ha™!
Us

143

Abbreviations

Community-based natural resource management

Centre de coopération internationale en recherche agronomique pour le
développment. (Agricultural Research Centre for International
Development)

Common-pool Resource and Multi-Agent Systems

Common Pool Resource

Dzongkhag Yargey Tshogtshung (District Development Committee)
Geog Yargey Tshogtshung (Block Development Committee)
Hectare

International Development Research Center

International Water Management Institute

Kilometer

Liter per second

Multi-agent system

Ministry of Agriculture

Ministry of Home Affairs

Natural Resource Management

Ngultrum (1 US$ = Nu. 45.01)

Planning Commission Secretariat

Royal Government of Bhutan

Renewable Natural Resources Research Center

Role-playing Game

Ton

Ton per hectare

United State of America

Chatro:
Cheep:
Chukor:
Langdo:
Lhangchu:
Mixed
Agriculture
Rimdo

Shokshing:

Thruelpa:

144

Glossary

Category of farmer who get half of Cheep’s share of water

Category of farmer who get half of Thruelpa’s share of water
Rotations of irrigation turns

Unit of land which is equal to 0.1 ha.

Category of farmer who do not have access to water.

Arable land used for growing multiple crops, e.g. kitchen garden where
mix of vegetables is grown in small plots.

Annual religious ceremonies performed at household and community
level

Woodlot on which either individual or the community have right-to-use
for leaf litter and dry firewood.

Originally tax payer in the community. Category of farmer who have
full access to water.

Name:
Date of birth:
Educational background:

1982-1986

2002-2004

Scholarships:

Working experiences:

2002-present

1999-2002

1996-1999

1992-1996

CURRICULUM VITAE

Tayan Raj Gurung

March 8, 1961

B.S. Agricultural Science, College of Agriculture,
Kerala Agricultural University, Vellayani, Trivandrum,

Kerala, India.

M.S. Agriculture (Agricultural Systems)
Chiang Mai University, Chiang Mai, Thailand

Department of Technical and Economic Cooperation
(DTEC), Thailand

Program Officer, Local Development Initiatives,
Council for Research and Extension, Ministry of

Agriculture, Thimphu.

Head, Information management section, Council for
Research and Extension, Ministry of Agriculture,
Thimphu

Head, Farming Systems and Support Service Sector,
RNR Research Center, Ministry of Agriculture,
Khangma.

Research Officer, Farming Systems Sector, RNR
Research Center, Ministry of Agriculture, Bajo.

1990-1992

1989-1990

1987-1990

146

Officer In-charge, Center for Agriculture Research and

Development, Ministry of Agriculture, Bajo.

National Oilseed Research Coordinator, Center for

Agriculture Research and Development, Bajo.

Assist Research Officer, Center for Agriculture
Research and Development, Ministry of Agriculture,

Bajo.

