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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 System, model and simulation in agriculture 

2.1.1 System define  

Many definitions related to "system" term, which were argued by former 

authors (Conway, 1986; Dillon, 1990; Dent and Blackie, 1979). System was a 

complex set of related components within autonomous framework (Dent and Blackie, 

1979), or collection interacting elements that formation together for some purposes or 

was a limited part of reality that contains interrelated elements such as agricultural 

systems consists of crop, animal, and human (Jintrawet, 1990). Likewise, simple 

system can be considered to compose small components and relationships among 

them and these relationships may be modeled by mathematic formulas/functions. This 

was concerned and studied by researchers and pioneer modelers.  

2.1.2 Simulation  

In the system analysis, at first, a set of logical statements and mathematic 

formulas on the real observed system is set up. Secondly, the stage to mimic the 

behavior of the complex system is developed. Finally, an experiment can be 

performed using the model (Nix, 1986). Using the model is so called as simulation. 

System approach and simulation tools have been used by engineers for over 30 years 

(Jintrawet, 1990), and presently are being applied in agricultural system research 

(Lemon, 1986). The approach is characterized by three categories: system, model and 

simulation. Crop or plant growth model belong sub symbolic model, mechanistic 

model, can be divided into classes: preliminary, comprehensive models and summary 

models (Penning de Vires, 1982). Modeling, in practice, represents a real object, in 
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which, crop growth is also such object. Modeling crop growth interested by 

researchers and agronomists, dealt with prediction of growth in association with 

environment factors such as climate and soil etc. The practice of agriculture is based 

on knowledge, tradition and conjecture, and agricultural research improves the 

knowledge that provides the basis for decision-making. Traditional disciplinary 

research methods have been used to deal with biological and economic problems but 

have not been entirely successful in handling the inherent complexities of agricultural 

activities. However, as knowledge is accumulated, results obtained from observation 

change from being qualitative to being quantitative and mathematics can be adopted 

as the tool to express biological hypotheses (France and Thornley, 1984). 

Furthermore, Penning de Vries et al. (1991) indicated that the advantages of 

simulation models are directly related to the mechanistic approach in the sense: (i) 

they can help researchers to gain better understand the systems. This leads to either 

finding gap in knowledge and data, or to determine opportunities for improving 

management of the real system. In both cases, simulation models help focus research 

and experimentation; (ii) they help to improve extrapolation of research findings to 

new environments whether existing or not e.g. global climatic change. Greater 

extrapolation allows for more extensive use of experimental data and reduces the need 

for additional experiments. This increases the efficiency of adaptive research in 

similar extrapolation domains; (iii) they also provide means for communicating within 

and among organization for accelerated knowledge transfer and application. Before 

Simulation process done it must be identify model for it. Some crop growth models 

and their feature are described in next part.  

2.1.3 Crop growth models in agriculture 

At present, crop model has been developed under the different boundaries of 

production levels. Such model has been developed through the processes, 

formulation, validation and sensitive analysis (Dent and Blackie, 1979). Moreover, 

they have being widely used in agriculture research such as CERES model (Richie et 

al., 1998), CROPGRO model (Boote et al., 1998), APSIM model. Over the last 20 

years, scientists have made considerable progress in development of computer models 
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that simulate the interactive effects of weather, soil and management factors on the 

growth and yield of crop. Two major goals of most of these modeling efforts were (i) 

to better understand the processes that contribute to the growth and yield of crop, (ii) 

to apply the models to improve crop management (Jones and Ritchie, 1991) 

Agricultural models are mathematical equations that represent the reactions 

that occur within the plant and the interactions between the plant and its environment. 

Owing to the complexity of the system and the incomplete status of present 

knowledge, it becomes impossible to completely represent the system in mathematical 

terms and hence, agricultural models are but crude images of the reality (Passioura, 

1973, 1996). 

Features of crop models 

The main aim of constructing crop models is to obtain an estimate of the 

harvestable (economic) yield. According to the amount of data and knowledge, that is 

available within a particular field, models with different levels of complexity are 

developed. Grouping of models have been attempted by various authors (Brockington, 

1979; France and Thornley, 1984; Brown and Rothery, 1994), but strong 

demarcations cannot be made since a model generally possesses the characteristics of 

more than one group. The most pertinent aspects of crop models are described below. 

Empirical model 

Empirical models are direct descriptions of observed data and are generally 

expressed as regression equations (with one or a few factors) and are used to estimate 

the final yield. Examples of such models include the response of crop yield to 

fertilizer application, the relationship between leaf area and leaf size in a given plant 

species and the relationship between canopy alone or coupled with stem number and / 

final yield in the soybean (Analla, 1998). These models are crude and are good means 

for interpolation at the location and the range over which they have been derived 

(Sinclair and Seligman, 1996) but it is advisable to avoid extrapolation. 
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Mechanistic model 

A mechanistic model is one that describes the behavior of the system in 

terms of lower-level attributes. Hence, there is some mechanism, understanding or 

explanation at the lower levels. These models have the ability to mimic relevant 

physical, chemical or biological processes and to describe how and why a particular 

response results. The modeler usually starts with some emprise and as knowledge is 

gained additional parameters and variables are introduced to explain crop yield. Thus, 

the modeler adopts an approach. Most crop growth models, namely those mentioned 

in sections. 

Static and dynamic models 

A static model is one that does not contain time as a variable even if the end 

products of cropping systems are accumulated over time, e.g., the empirical models. 

In contrast dynamic models explicitly incorporate time as a variable and most 

dynamic models are first expressed as differential equations: 

dy/dt = f (X)  

Where y = an attribute of the system (animal live weight) 

t = time variable 

f = some function, possibly of y, t and other parameters. 

The integration of the above equation will give the actual behavior of the 

system over time. It may be possible that at some stage, the rate of change of the 

system becomes zero such that dy/dt = 0 and therefore f (X) = 0, and the model is then 

static (France and Thornley, 1984). This continuum from dynamic to static state of 

dynamic models was also reported by Brown and Rothery (1994). 
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Deterministic and stochastic models 

A deterministic model is one that makes definite predictions for quantities 

(e.g., animal live weight, crop yield or rainfall) without any associated probability 

distribution, variance, or random element. However, variations due to inaccuracies in 

recorded data and to heterogeneity in the material being dealt with are inherent to 

biological and agricultural systems (Brockington, 1979). In certain cases, 

deterministic models may be adequate despite these inherent variations but in others 

they might prove to be unsatisfactory e.g. in rainfall prediction. The greater the 

uncertainty in the system, the more inadequate deterministic models become. 

When variation and uncertainty reaches a high level, it becomes advisable to 

develop a stochastic model that gives an expected mean value as well as the 

associated variance. However, stochastic models tend to be technically difficult to 

handle and can quickly become complex. Hence, it is advisable to attempt to solve the 

problem with a deterministic approach initially and to attempt the stochastic approach 

only if the results are not adequate and satisfactory (Thornley and Johnson, 1990). 

Simulation and optimizing models 

Simulation models form a group of models that is designed for the purpose 

of imitating the behavior of a system. They are mechanistic and in the majority of 

cases they are deterministic. Since they are designed to mimic the system at short time 

intervals (daily time-step), the aspect of variability related to daily change in weather 

and soil conditions is integrated. The short simulation time-step demands that a large 

amount of input data (climate parameters, soil characteristics and crop parameters) be 

available for the model to run. These models usually offer the possibility of specifying 

management options and they can be used to investigate a wide range of management 

strategies at low costs. Most crop models that are used to estimate crop yield fall 

within this category. Optimizing models have the specific objective of devising the 

best option in terms of management inputs for practical operation of the system. For 

deriving solutions, they use decision rules that are consistent with some optimizing 

algorithm. This forces some rigidity into their structure resulting in restrictions in 
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representing stochastic and dynamic aspects of agricultural systems. Linear and non-

linear programming was used initially at farm level for enterprise selection and 

resource allocation. 

Later, applications to assess long-term adjustments in agriculture, regional 

competition, transportation studies, integrated production and distribution systems as 

well as policy issues in the adoption of technology, industry re-structuring and natural 

resources have been developed (Wegener, 1994). 

Optimizing models do not allow the incorporation of much biological detail 

and may be poor representations of reality. Using the simulation approach to identify 

a restricted set of management options that are then evaluated with the optimizing 

models has been reported as a useful option (Swartzman and Van Dyne, 1972; 

Crabtree, 1972; Trebeck and Hardaker, 1972). 

Model-building capabilities are developed and it becomes possible to adopt a 

holistic and quantitative approach to problem solving within the agricultural field. 

Owing to the inherent complexity of agriculture, modeling studies started only in the 

1970s. Rapid accumulation of knowledge in the agricultural field and the increased 

accessibility to information technology has contributed to the development of a wide 

number of agricultural models over the last three decades. 

2.2 Testing model 

The model testing stage involves the confirmation that the calibrated model 

closely represents the real situation. The procedure consists of a comparison of 

simulated output and observed data that have not been previously used in the 

calibration stage. Ideally, all mechanistic models should be tested both at the level of 

overall system output and at the level of internal components and processes. The latter 

is an important aspect because due to the occurrence of feedback loops in biological 

systems, good prediction of system’s overall output could be attributed to 

compensating internal errors (van Keulen, 1976). However, testing of all the 

components is not possible due to lack of detailed datasets and the option of testing 
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only the determinant ones is adopted. For example, in a soil-water-crop model, it is 

important to test the extractable water and leaf area components since biomass 

accumulated is heavily dependent on these. 

Testing procedures involve both qualitative and quantitative comparisons. 

Before starting the quantitative tests, it is advisable to qualitatively assess time-trends 

of simulated and observed data for both internal variables and systems outputs. Major 

discrepancies can be detected visually and these can be corrected before any 

quantitative tests are attempted. Quantitative comparison is generally restricted to a 

linear regression of the observed on simulated data (or vice versa), the expectation 

being a regression line with slope = 1 and intercept = 0 in the ideal case (Jones and 

Kiniry, 1986; Jones et al., 1989; Hammer and Muchow, 1991; Carberry and Muchow, 

1992; Keating et al., 1999; Cheeroo-Nayamuth et al., 1999). Adjusted R2 and root 

mean square deviation are usually adopted to assess the goodness-of-fit despite 

objections raised by Thornton and Hansen (1996), Mitchell (1997) and Analla (1998). 

Inadequate predictions of model outputs may require “re-fitting” of the regression 

curves or fine-tuning of one or more internal variables. This exercise should be 

undertaken with care because arbitrary changes may lead to changes in model 

structure that may limit the use of the model as a predictive tool. 

In some cases, it is best to seek more reliable data through further 

experimentation than embarking on extensive modification of model parameters to 

achieve an acceptable fit to doubtful data. This decision relies on the modeler’s 

expertise and rigor as well as on human resources and time available to invest in fine-

tuning model predictions. 

Evaluation is involved comparison of the outputs of fully calibrated model to 

real data and a determination of suitability for an intended purpose (Lemon, 1977), if 

it is desired to predict grain yield, the evaluation end point should encompass 

information on relationship between predicted and actual grain yields, on the 

environments involved and on specific aspects that could affect interpretation. 

Environment could be specified in a general way by using environment index such as 

grain yield as used in some plant breeding analysis, in term of some agronomic 
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factors such as planting date, plant population, or major physical aspects of the 

environment e.g. soil texture, soil depths, mean temperature, day length. In principle, 

in model evaluation, providing of each specific reasons, there are three levels of 

model testing and evaluation: informational model testing (presumes model has been 

developed), (ii) minimal model testing (collecting enough season data to check model 

performance for a new region or cultivars), (iii) maximum-model calibration or detail 

testing (Tsuji, 1998). Also, for evaluation of model, based on fundamental principle, 

the determination of suitability of model for intended used, they common compare 

simulated data from the model and measured data from real experiments, popular 

method is to use formula error sum of square between simulation and observed data 

(Hunt, 1988). 

There were so many authors who interested in model evaluation in 

diversified and various aspects by using previous models and developed, modified, 

testing and evaluation, applying the model to new and potential areas and new 

cultivars. Alagarswamy et al. (2000) studied the evaluation and application of the 

CROPGRO soybean simulation model in specific soil condition namely a Vertic 

Inceptisol. The model predicted reasonably the temporal changes in leaf are index, 

biomass and grain yield, was used to develop yield - ET relationship, and to assess the 

influence of soil water storage capacity on yield.  Panya (1993) with his experiment of 

some rice varieties and based on five planting dates, using CERES-rice, validated the 

model. It was shown that simulated results and experimental data had close 

relationship, concluded the successful modified coefficient. The CERES-wheat was 

tested for the phasic development of using 113 independent data sets from a diversity 

of location throughout the world (Otter-Nacke et al., 1987) and for accuracy of 

planting dates of various phonological events for winter wheat in Kansas (French and 

Hodges, 1985). Ruiz-Nogueira et al., (2001) calibrated the CROPGRO-soybean 

model for growth and yield under rain fed conditions in Galicia, Spain, and then use 

the calibrated model to establish the best sowing dates for three cultivars at three 

locations in this region. 
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2.3 Previous studies related to determine genetic coefficients 

There were some previous studies studying to determine or estimate the 

genetic coefficient i.e. for rice, and in general they had to be based on fundamental 

principles were defined that characteristics for one cultivars have been termed the 

"Genetic coefficients" for that cultivars. They can be defined that coefficients 

expressed summary way in which a specific crop cultivars divided up its life cycle, 

responds to different aspects of its environment, or appear/changes morphologically 

(IBSNAT, 1990). The crop genetic coefficients with each crop, consists of various 

terms and divided up into different phonological stages, i.e. soybean and maize, 

genetics coefficients of soybean are more so many than maize (IBSNAT, 1990). 

There are previous studies on additional reproductive stages development 

one of the problems in obtaining robust and accurate parameters estimates for 

predicting soybean phenological stages is the lack of adequate data sets that include a 

wide range of night length and temperature. Development stages of soybean was 

divided into vegetative and reproductive, through such description soybean research 

in aspect of plant development is based on the standard descriptions of soybean 

development stages. In the past there were some systems for soybean development 

stages; also thanks separating into development stages, Jone et al., (2001) in their 

study they applied this for phenology module that was run in DSSAT software. 

The genetic coefficients need to be estimated for new cultivars. Many 

authors by various methods and approaches calculate the genetics coefficients for new 

varieties or genotypes. Jintrawet (1991), Panya (1993) estimated the genetic 

coefficients for rice, by using CRES-rice and indicated that crop model can determine 

the genetic coefficients successfully although it need time and precise of recorded 

data from the experiments or related trials. Singh and Virmani (1996) used 

experiment data of the 1984 and 1986 seasons, the model calibrated for cultivars-

specific parameters of Annigeri and JG74 chickpea varieties. The model validated that 

result show CHICKPEA can be used to predict potential and water of chickpea in the 

Indian plateau. Wilson et al. (1995) used modified coefficient for maize to compare 

effects of temperature and solar radiation on growth and yield to be simulated in both 
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warm and cool climate by using modified coefficients in terms of phenology, growth 

and final harvest.  Alagarswamy et al. (2000) in their study, has determined the 

genetic coefficients for soybean cultivars PK470 that continued to be used for 

simulating in next steps, model testing of CROPGRO-soybean, and commonly the 

genetics coefficients were determined by GENCAL (Hunt et al., 1993) in the DSSAT 

v3.5.    

2.4 Methods of model evaluation  

Evaluation of a crop model simulation model involves establishing 

confidence in its capability to predict outcomes experiences in the real world. A 

frequently used method for evaluation of models involves comparing observed values 

with simulated results in a scatter diagram. Normally a linear regression is used to fit 

a straight line between observed and simulated values (Ohnishi et al., 1997). Then 

either parametric (Hammer and Muchow, 1991) used to determine whether the 

intercept of linear regression is equal to zero and the slope is equal to or not 

significantly different from unity. Mitchell (1997) argued against using linear 

regression as a testing tool because of its inherent inappropriateness and violation of 

assumptions associated using regression as a tool, and difficulties experienced in 

accrediting a true null hypothesis. Mitchell and Sheehy (1997) provided an alternative 

objective and simple method, free of a priory assumption. This method uses the 

deviations (prediction minus observation) plotted against the observed values and 

specific two criteria for adequacy of the model. They are the envelope of acceptable 

precision and proportion of points that must lie within the envelope. In this method, 

no statistical tests are involved and hence the problem of satisfying assumptions is 

avoided. Testing is one of some components of model evaluation, despite extensive 

literature dealing with testing procedures, validating simulation models remains a 

difficult and elusive task (Shannon, 1975). Different testing methods have been 

applied ranging from simple visual comparison of model predictions with field 

observations to highly sophisticated statistical tests. Some of the testing procedure, 

however, violate the basic assumption of statistical independence and cannot be 

legitimately used (Curry and Feldman, 1987). A distribution- free, non parametric test 
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for the regression slope described by Hollander and Wolfe (1973) has been suggested 

by Welch et al. (1981) for model testing in pest management. The method consists of 

plotting observed versus predicted values, and testing whether the points deviate 

significantly from a line of unit slope. Commonly, goodness of fit was evaluated 

visually and by computing a standardized bias (R) and a standardized mean square 

error (V). 

2.5 Environmental factors effect on soybean development and yield  

2.5.1 Environment factors and crop yield 

Some environment factors effect to soybean yield such as elevated CO2, 

increased temperature, and altered rainfall patterns. Past studies to address effects of 

climatic changes have been conducted with crop models of varying abilities, some 

with somewhat empirical adjustments for the CO2 fertilization effect. Continued 

evaluation is needed, particularly using models with mechanistic processes and 

sensitivity to CO2 and temperature. With climatic change, the weather is proposed to 

be more variable, but present in weather simulators poorly reproduce rainfall patterns 

in same areas of the world. It may be better to use long term sequences of historical 

weather and to modify the temperatures and rainfalls proportionately to correspond to 

the monthly temperature and rainfall offsets predicted by the GCMs, as was done by 

Curry and Feldman (1987).  

Based on factors affecting to soybean growth i.e. management conditions 

such as planting date, row spacing, plant population, irrigation and cultivars choice, 

(Boot et al., 1998) model was formed to simulate. In practice, yield response to long- 

term historical weather records for a region, and to optimize planting date, planting 

density, row spacing, choice cultivars, and fertilization application for different soil 

types. Egli and Bruening (1992) used the SOYGRO model to predict soybean 

response to sowing date in Kentucky. Based on model evaluations, they concluded 

that lower yield with later sowing date could be attributed to lower solar irradiance 

during late plantings and, in some cases, to lower temperature during grain filling for 

later cultivars.  
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2.5.2 Sowing date and crop yield 

Main characteristics to consider in selecting a soybean varieties include 

maturity, lodging resistance, and resistance to disease and insects. Planting date is one 

of factors that effect on soybean yield due to soybean response to environment and so 

it declined an average of 3.6% as planting date was delayed from early May to the last 

of May or the first of June (Walter, 1983).  Seed quality can influence yield in two 

ways indirectly by influencing emergence and final stand or directly through its 

influence on plant vigor, if inadequate plant population are obtained as a result of the 

use of low quality planting seed; yield will be reduced (Wilson et al., 1995). 

Aggarwal and Kalra (1994) used a wheat simulation model to show that 

delay in sowing date decreased wheat yield in India, in part by subjecting the crop to 

warmer temperatures during the grain filling. Crop models were used by Muchow et 

al. (1994) to access climatic risks relative to planting date decisions for sorghum in a 

subtropical rain fed region. In many tropical and subtropical regions, planting 

decisions await the onset of a short summer rainy season, and the available soil water 

reservoir is often only partially recharged in winter season. Singh et al. (1994) 

evaluated peanut growth model, PNUTGRO, and found good predictions of soil water 

dynamics and pod yield in response to seasonal variation of rainfall.  

Sowing date closed soybean crop development process due to soybean is 

sensitive with temperature, photoperiod. Vegetative growth response to temperature, 

vegetative processes that are sensitive to temperature include rate of germination and 

emergence, rate of vegetative node formation, duration of vegetative growth, specific 

leaf area, photosynthesis, and maintenance respiration. Reproductive growth 

responses to temperature, it is important to describe appropriately temperature effects 

on the duration of seed growth phase, seed growth rate, pod addition, and 

portioning/pod abortion.  

Two environment variables, photoperiod and temperature, strongly affect on 

soybean development. Soybean is a quantitative, short day plant. Most cultivars 

flower sooner under long night than under short night (Borthwick and Parker, 1938).  



ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d

 16

Gallegos et al. (1996) found significance effect on the durations of phases from 

flowering, pod set, and end of flowering to maturity when photoperiod was increased 

at the beginning of each of those phases. 

2.5.3 Cultivars  and crop yields 

Cultivars proved that with various cultivars crop yields also ranged and 

changed though under the same climatic and soil conditions. Cultivars also related to 

number of grain seed in harvesting as well as seed quality and nutrition. Each 

cultivars is characterized by its genetics coefficients (IBSNAT, 1990), and brings 

various grain yields, responds with specific climate and soil situations. Due to 

relationship between cultivars and crop grain yield, researchers and breeders always 

search new crop lines and varieties selection, and expand new cultivars suitably to 

specific agro ecological zones to obtain the potential crop yield. Providing each 

cultivars in different condition, grain yields can be appeared differently from among 

others, and also extend more differences from various crop cultivars of several 

thousand breeds. Crop model simulation can be employed to select new improved 

cultivars based on modeling and simulation for crop responds with climatic and soil 

conditions, farm practices, and genetics coefficients. 
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