TABLE OF CONTENTS

Acknowledgment iii

Abstract (English) v

Abstract (Thai) ix

List of tables xvi

List of figures xix

Introduction 1

Chapter 1 Literature review 6

1.1 Introduction 6

1.2 Factors influencing soil B supply for crop production 7

 1.2.1 Parent materials 7
 1.2.2 Soil properties 8
 1.2.3 Crop species 11
 1.2.4 Other factors 12

1.3 Boron deficiency in crop production 13

 1.3.1 The response of vegetative growth to low B 13
 1.3.2 The response of reproductive growth to low B 15
 1.3.2.1 Male development in cereals 15
 1.3.2.2 Female development in cereals 16

1.4 Nutrient efficiency 17

 1.4.1 B-efficient and B-inefficient genotypes in cereals 20
 1.4.2 Mechanisms for uptake efficiency, mobility, requirement 21
Chapter 2 Boron deficiency in maize 24

2.1 Introduction 24
2.2 Materials and methods 25
 2.2.1 Experiment 1: Field experiment 26
 2.2.2 Experiment 2: Sand culture 26
2.3 Results 27
 2.3.1 Experiment 1: Field experiment 27
 2.3.2 Experiment 2: Sand culture 39
2.4 Discussion 47

Chapter 3 Morphological and physiological responses of maize to low boron 49

3.1 Introduction 49
3.2 Materials and methods 50
 3.2.1 Experiment 1: Responses of maize to low B 50
 3.2.1.1 Experiment 1.1: Sand culture 50
 3.2.1.2 Experiment 1.2: Nutrient solution 51
 3.2.2 Experiment 2: Manual pollination between B0xB20 52
 3.2.3 Experiment 3: Anatomy and morphology of silk and pollen 53
 3.2.4 Experiment 4: pollen viability 55
3.3. Results 56
 3.3.1 Experiment 1: Responses of maize to low B 56
 3.3.1.1 Experiment 1.1: Sand culture 57
 3.3.1.2 Experiment 1.2: Nutrient solution 72
3.3.2 Experiment 2: Manual pollination between B0xB20 87
3.3.3 Experiment 3: Anatomy and morphology of silk and pollen 90
3.3.4 Experiment 4: pollen viability 98
3.4 Discussion 104

Chapter 4 Genotypic variation in responses to boron in maize 109
4.1 Introduction 109
4.2 Materials and methods 110
4.3 Results 111
4.4 Discussion 153

Chapter 5 General discussion 156
5.1 Response of maize to boron application 156
5.2 Morphological and physiological response of maize to low boron 158
5.3 Genotypic variation in vegetative and reproductive responses to low boron in maize 162
5.4 General conclusion 164
5.5 Future research 165

References 166
Curriculum vitae 179
LIST OF TABLES

Table Page
1.1 Boron requirement of some crops 12
2.1 B concentration (mg B kg\(^{-1}\)) and B content (µg) in various plant parts of maize at 5-leaf stage grown in sand culture with and without added B 42
2.2 Dry weight (g plant\(^{-1}\)), B concentration (mg B kg\(^{-1}\)) and B content (µg) in various plant parts of maize grown in sand culture with and without added B at anthesis stage. 43
2.3 Yield, yield component, plant height and dry weight of shoot and root of maize grown in sand culture with and without added B 46
3.1 Boron concentration (mg B kg\(^{-1}\)) and boron content (µg plant\(^{-1}\)) in various plant part of maize (cv. NS72) at vegetative growth 60
3.2 Dry weight (g) and B concentration (mg B kg\(^{-1}\) DW) in anther and chaff of maize from 100 florets at reproductive development grown in sand culture with and without added B. 68
3.3 Effects of B on grain yield and the number per ear of maize (cv. NS 72) 71
3.4 Dry weight (g) of tassel, silk, the number of silk, silk length (cm) and B concentration (mg B kg\(^{-1}\)) in some various reproductive parts of maize (cv. NS72) at anthesis (75DAS). 71
3.5 Effects of B on grain yield, 100 grain weight and the number of grain per ear of maize grown in sand culture 75
3.6 Dry weight (mg plant\(^{-1}\)) and B concentration (mg B kg\(^{-1}\)) in shoot
and root of maize seedlings (7-day old) grown in nutrient solution 77

3.7 B concentration (mg B kg⁻¹ DW) in various plant parts and the ratio of B content in shoot and root of two maize genotype grown in nutrient solution for 10 (H1) and 18 days (H2) 78

3.8 Effects of B on plant height (cm), number of leaf per plant of two maize genotypes grown in nutrient solution for 10 (H1) and 18 days (H2) 80

3.9 Grain set by crossing pollination of pollen and silk from B deficient plants (DB) and sufficient plants (SB). 89

3.10 Pollen sterility (%) of maize determined by iodine staining 96

3.11 Pollen germination (%) in media with and without added B 100

3.12 Effects of B deficiency on dry weight (g plant⁻¹) in various plant part of maize and shoot: root dry weight at maturity 100

3.13 Effects of B deficiency on B concentration (mg B kg⁻¹ DW) in various plant parts of maize (cv. NS72) at pollen shedding 101

3.14 Effects of B deficiency on B content (µg B plant⁻¹) in various plant parts of maize (cv. NS72) 102

3.15 Effects of B deficiency on reproductive development of maize 103

4.1 Dry weight (g plant⁻¹) of the YEB, total shoot and root of seven genotypes of maize at two levels of B supply at the 5-leaf stage 114

4.2 Boron content (µg plant⁻¹) in the YEB, total shoot and root of the seven genotypes of maize at two levels of B supply at the 5-leaf stage 116

4.3 The ratio between shoot and root for dry weight and B content of seven genotypes of maize at two levels of B supply at the 5-leaf stage 117
4.4 Boron uptake (μg B g⁻¹ root DW) of seven genotypes of maize at two levels of B supply at the 5-leaf stage (H1)

4.5 Dry weight (g plant⁻¹) in total shoot, husk and shoot: root ratio dry weight of seven genotypes of maize at two levels of B supply at anthesis

4.6 B concentration (mg B kg⁻¹ DW) in baby corn and husk of seven genotypes of maize at two levels of B supply at anthesis

4.7 Boron content (μg B plant⁻¹) in plant parts of the seven genotypes of maize at two levels of B supply at anthesis

4.8 Days of tassel emergence, days of silk emergence and the number of branches in tassel of seven genotypes of maize at two levels of B supply at anthesis

4.9 Grain yield of maize (g ear⁻¹) of the seven genotypes of maize at two levels of B supply

4.10 Grain number (grain number ear⁻¹) of the seven genotypes of maize at two levels of B supply

4.11 Dry weight of 100 grains (g) of seven genotypes of maize at two levels of B supply

4.12 Correlation coefficients (R²) between grain yield and boron concentration (mg B kg⁻¹ DW) in reproductive tissue

4.13 Effects of B on days to tassel emergence, days to silk emergence, the number of branches-tassel plant per plant, leaf number and plant height (cm) of the seven genotypes of maize at two levels of B supply at anthesis
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Structure of the thesis</td>
<td>5</td>
</tr>
<tr>
<td>1.1</td>
<td>Boron deficiency is widespread area</td>
<td>10</td>
</tr>
<tr>
<td>2.1</td>
<td>Dry weight (g plant(^{-1})) in various plant parts of maize at 5-leaf stage grown in the field</td>
<td>30</td>
</tr>
<tr>
<td>2.2</td>
<td>Total dry weight (g plant(^{-1})) of maize at 5-leaf stage grown in the field</td>
<td>31</td>
</tr>
<tr>
<td>2.3</td>
<td>B concentration (mg B kg(^{-1}))) in various plant parts of maize at 5-leaf stage grown in the field</td>
<td>32</td>
</tr>
<tr>
<td>2.4</td>
<td>B content (µg plant(^{-1})) in various plant parts of maize at 5-leaf stage grown in the field</td>
<td>33</td>
</tr>
<tr>
<td>2.5</td>
<td>Tassel dry weight (g plant(^{-1})) of maize at anthesis grown in the field</td>
<td>34</td>
</tr>
<tr>
<td>2.6</td>
<td>Dry weight (g plant(^{-1})) in various plant parts of maize at anthesis grown in the field</td>
<td>35</td>
</tr>
<tr>
<td>2.7</td>
<td>B concentration (mg B kg(^{-1})) in various plant parts of maize at anthesis grown in the field</td>
<td>36</td>
</tr>
<tr>
<td>2.8</td>
<td>B content (µg B plant(^{-1})) in various plant parts of maize at anthesis grown in the field</td>
<td>37</td>
</tr>
<tr>
<td>2.9</td>
<td>Grain yield, yield components and plant height of maize grown in the field with limed soil</td>
<td>38</td>
</tr>
<tr>
<td>2.10</td>
<td>Dry weight (g plant(^{-1})) in various plant parts of maize at 5-leaf stage grown in sand culture</td>
<td>41</td>
</tr>
<tr>
<td>2.11</td>
<td>Symptom of B deficiency of maize grown in sand culture without</td>
<td></td>
</tr>
</tbody>
</table>
added B at anthesis.

2.12 Symptom of B deficiency of maize: white strips or transparent streaks on leaf lamina at anthesis grown in sand culture without added B compared with added B

2.13 Boron deficiency symptom of NS72: multiple ears (a) and small tassel (b) at anthesis grown in sand culture

2.14 Anthers from B-deficient plant (B0): dead anthers (a) thin anthers (b) and normal plant (B20): normal anthers

3.1 Dry weight (g plant$^{-1}$) of maize at vegetative growth (5-leaf stage, 20DAS) grown in sand culture

3.2 Dry weight (g plant$^{-1}$) of plant parts at vegetative growth (40DAS, before tassel emergence) grown in sand culture

3.3 B concentration (mg B kg$^{-1}$ DW) in plant parts at vegetative growth (40DAS, before tassel emergence) grown in sand culture

3.4 B content (µg B plant$^{-1}$) in plant parts at vegetative growth (40DAS, before tassel emergence) grown in sand culture

3.5 Dry weight (g plant$^{-1}$) in parts of maize at early tassel emergence (63DAS) grown in sand culture

3.6 B concentration (mg B kg$^{-1}$ DW) in parts of maize at early tassel emergence (63DAS) grown in sand culture

3.7 B content (µg B plant$^{-1}$) in parts of maize at early tassel emergence (63DAS) grown in sand culture

3.8 Boron deficiency symptom: white spot (a) at 27 DAS and white strips (b) at 40DAS
3.9 Multiple ears and short silks in B0 maize (a and c: removed husk) and normal ear in B20 (b and d: ear after removed husk) at anthesis

3.10 B deficiency symptom: transparent streak in 7-day old seedlings:
(a) NS 72, (b) SC.

3.11 The relationship between B concentration in YEB (mg B kg$^{-1}$) and shoot dry weight (g plant$^{-1}$) of two maize genotypes grown in nutrient solution for 10 (H1) and 18 days (H2).

3.12 The relationship between root length (cm) and B in nutrient solution

3.13 The relationship between root length (cm) and whole plant (total+ root) dry weight (g plant$^{-1}$) of two maize genotypes (cv. NS72 and SC) grown in nutrient solution for 10 (H1) and 18 days (H2).

3.14 The relationship between B uptake in shoot (µg B g$^{-1}$ root DW) and B concentration in nutrient solution of two maize genotypes (cv. NS72 and SC) at day 10 (H1)

3.15 The relationship between relative shoot dry weight and B concentration in nutrient solution of two maize genotypes grown for 10-18 days (H2).

3.16 Relative growth rate (g 100g$^{-1}$ day$^{-1}$) of two maize genotypes grown in nutrient solution B for 10 (H1) and 18 days (H2)

3.17 The relationship between relative shoot dry weight (dry weight of each B level divided at B1) and B concentration in nutrient solution of two maize genotypes (NS72 and SC) grown for 18 days (H2)

3.18 Effects of B on grain set in maize (cv. NS72): a) B20xB20; b) B0xB0; c) B20xB0 and d) B0xB20. Female (♀) and male (♂) is silk and pollen respectively, B+ is represented B-sufficiency plant (B20) and B0 is
B-deficient plant.

3.19 SEM showed a silk from the upper (a=B0 and b=B20) and lower part (c=B0 and d=B20) of young ear at anthesis stage

3.20 Cross section of silk tip from top of baby corn stained with PAS- TBO to indicate the accumulation of starch of B20-maize plant

3.21 Cross section of anthers stained with PAS to indicate the accumulation of starch (arrow) in pollen grains and anther wall of B20-maize plant (a:B20) and the absence of starch in B-deficient maize plant

3.22 Cross section of connective tissue of anther stained with PAS and TBO to indicate the accumulation of starch

3.23 Pollen stained with iodine staining solution

4.1 Boron concentration (mg B kg\(^{-1}\) DW) in plant parts of seven genotypes of maize at two levels of boron supply at the 5-leaf stage

4.2 Plant height (cm) of the seven genotypes of maize at two levels of B supply at the 5-leaf stage

4.3 Dry weight (g plant\(^{-1}\)) in plant parts of seven genotypes of maize at two levels of B supply at anthesis.

4.4 Dry weight (g plant\(^{-1}\)) in plant parts of the seven genotypes of maize at two levels of B supply at anthesis

4.5 B concentration (mg B kg\(^{-1}\) DW) in tassel, flag leaf and ear leaf of seven genotypes of maize at two levels of B supply at anthesis

4.6 B concentration (mg B kg\(^{-1}\) DW) in silks, pollen grains and baby corn of seven genotypes of maize at two levels of B supply at anthesis

4.7 B concentration (mg B kg\(^{-1}\) DW) in shoot of the seven genotypes
of maize at two levels of B supply at anthesis

4.8 B content (µg B plant\(^{-1}\)) in tassel, ear leaf and root of the seven
genotypes of maize at two levels of B supply at anthesis

4.9 B content (µg B plant\(^{-1}\)) in baby corn of the seven genotypes
of maize at two levels of B supply at anthesis

4.10 Total B uptake (shoot+ root: µg B g\(^{-1}\) root dry weight) of the seven
genotypes of maize at two levels of B supply at anthesis

4.11 Silk number (silk ear\(^{-1}\)) of the seven genotypes of maize at two
levels of B supply at anthesis

4.12 Plant height (cm) and leaf number (leaf plant\(^{-1}\)) of the seven genotypes
of maize at two levels of B supply at anthesis

4.13 B deficiency symptom in ear of three maize genotypes as multiple ears

4.14 Straw dry weight (g plant\(^{-1}\)) of the seven genotypes of maize at two
levels of B supply at anthesis

4.15 Root dry weight (g plant\(^{-1}\)) of the seven genotypes of maize at two
levels of B supply at anthesis

4.16 Boron concentration (mg B kg\(^{-1}\)) in husk, straw and root of the seven
genotypes of maize at two levels of B supply at anthesis

4.17 The relationship between B concentration (mg B kg\(^{-1}\) DW) in silk,
pollen and relative grain yield of all seven genotypes of maize at two
levels of B supply at anthesis

4.18 The relationship between B concentration (mg B kg\(^{-1}\) DW) in tassel,
flag leaf and ear leaf and grain number (grain number ear\(^{-1}\)) of the
seven genotypes of maize at two levels of B supply at anthesis
4.19 B deficiency symptom in ear of maize (c: Pioneer, d: NS72) and normal ear (a: Pioneer; b: NS72)