Thesis Title The Entrapment of Natural Peptides in Nanoparticles for Scar Treatment

Author Ms. Charinya Chankhampan

Degree Doctor of Philosophy (Pharmacy)

Thesis Advisory Committee Prof. Dr. Aranya Manosroi Advisor
Prof. Dr. Jiradej Manosroi Co-advisor
Prof. Dr. Yoshiaki Kawashima Co-advisor
Asst. Prof. Dr. Kassara Pattamapun Co-advisor

ABSTRACT

This study aimed to develop optimum transdermal delivery systems for peptide enzymes from natural sources loaded in nanocarrier for scar treatment. Low cytotoxic elastic niosomal formulation loaded with salmon calcitonin (a model peptide) which composed of Tween 61, cholesterol and edge activators was developed. The 5% mole sodium cholate (NaC) elastic niosome appeared to be the most appropriate niosomal system to load the peptide because of its high elasticity and low cytotoxicity on human skin fibroblasts. Both calcitonin loaded in elastic and non-elastic niosomes did not only show higher chemical stability at high storage temperatures, but also superior transdermal absorption in comparing to calcitonin in solution. Papain and bromelain, the protease enzymes from Carica papaya latex and pineapple (Ananas comosus) fruits were extracted and purified by the simple precipitation with 95% ethanol and the saturated ammonium sulfate, respectively. The molecular weight of the extracted enzymes was compared with their standards and the protein marker by SDS-PAGE. The purity of papain and bromelain of the extracted enzymes determined by HPLC were 82.31 and 38.03%, respectively. The physicochemical properties including solubility and stability in various reagents of the extracted
enzymes were similar to their standards. The standard and extracted papain exhibited higher antioxidant activity than bromelain both in free radical scavenging (SC_{50}) and lipid peroxidation inhibition (IPC_{50}) activity. However, the extracted papain showed lower antioxidant activity than the standard papain. All protease enzymes at 25 µg/ml did not only show no cytotoxicity, but also exhibited an interesting relative MMP-2 stimulation on human skin fibroblasts. The extracted papain gave the highest MMP-2 stimulatory activity at 2.10 folds of the control which were higher than the standard papain, the standard and extracted bromelain of 1.04, 1.31 and 1.24 times, respectively. The papain and bromelain loaded in 5% mole sodium cholate (NaC) elastic niosome were developed. They gave the vesicular sizes in the range of 109.5 to 143.9 nm with the negative zeta potential of -14.7 to -30.1 mv. The morphology of the niosomes was in spherical shape with unilamellar structure observed under TEM microscope. The elastic niosomes did not only improve the entrapment efficiency of the enzymes over the non-elastic niosomes, but also reduced the toxicity on skin human fibroblasts. The MMP-2 stimulatory activity of papain and bromelain was still existing similar to their free enzymes even they were loaded in elastic niosomes. The relative MMP-2 stimulation of the standard papain, extracted papain, standard bromelain and extracted bromelain loaded in elastic niosomes were 1.26, 1.34 1.09 and 1.20 for the pro MMP-2 and 1.26, 1.41, 1.01 and 1.03 for the active MMP-2, respectively in comparing to the control. The extracted papain loaded in elastic niosomes gave superior characteristics (low cytotoxicity and high MMP-2 stimulation) to other enzymes. The elastic niosomes can enhance the chemical stability of the extracted papain, by exhibiting higher remaining contents than the free enzyme and that loaded in non-elastic niosomes when kept at various temperatures (4±2, 27±2 and 45±2 °C) for 8 weeks. The standard papain loaded in PLGA nanospheres prepared by the water-oil-water emulsion solvent evaporation method (ESE) gave superior characteristics (small particle size and low polydispersity index) to the emulsion solvent diffusion in water method (ESD). The morphology of the nanospheres loaded with papain prepared by the ESE method exhibited spherical shape and smooth surface investigated by SEM and TEM. The encapsulation efficiency of papain in the nanospheres by the ESE method was about 2 times higher than those by the ESD method. The release profile of papain from the PLGA
nanospheres of the ESD and ESE methods indicated the 2 phases with an initial rapid phase of 6 h and followed by the slow release phase of 48 h. Papain loaded in the nanospheres prepared by the ESD method showed more rapid initial release than those by the ESE method. The blank PLGA nanospheres from the two methods did not show any cytotoxicity in human skin fibroblasts, while the free papain gave toxicity more than the loaded papain of 1.5 times. Papain loaded in PLGA nanospheres prepared by the ESE method was more chemical stable than the free papain of 8 and 3 times when kept at 4±2 and 25±2 °C for 6 weeks, respectively. The gels incorporated with papain loaded in non-elastic niosomes (GNN), elastic niosomes (GEN) and PLGA nanospheres (GPN) were developed. These formulations were investigated for physicochemical characteristics and transdermal penetration through rat skin by Franz diffusion cells. The vesicular sizes of all niosomes and nanospheres in the gel formulations were in the range of 220.7 to 520.2 nm. Papain loaded in elastic niosomes and incorporated in gel exhibited the accumulate amounts and fluxes in the whole rat skin and in the receiving solution more than those from gel containing papain loaded in non-elastic niosomes, PLGA nanospheres and in solution. The calculated PII values of all gel formulations containing papain in rabbit skin irritation closed patch test were in the range of 0.00-0.44 indicating of no irritation, except gel containing free papain (PII = 0.78, slight irritation). GEN gave superior chemical stability to gel containing free papain (GS) of 1.13, 1.29 and 1.35 times when stored at 4±2, 27±2 and 45±2 °C after 3 months, respectively. After 28 day application by the hypertrophic scar model in rabbit ears, the scar applied with GEN exhibited the percentage reduction of hypertrophic scars at 29.17% which was higher than gel base, GS, and GNN of 10.20, 2.73 and 2.31 times, respectively, but slightly lower than commercial product of 1.10 times. This study has demonstrated the potential of niosomes, especially the elastic niosomes, for the enhancement of rat skin transdermal absorption and the improvement of scar reduction in rabbit ear model of papain which will be beneficial for topical application in scar treatment.
ชื่อวิทยานิพนธ์
การเก็บกักโปรตีนจากธรรมชาติในอนุภาคขนาดนาโนเพื่อใช้รักษาแผลเป็น

ผู้เขียน
นางสาว จริญญา จันทร์คาม

ปริญญา
วิทยาศาสตรดุษฎีบัณฑิต (เภสัชศาสตร์)

คณะกรรมการที่ปรึกษาวิทยานิพนธ์
ศ. ดร. อรัญญา มโนสร้อย
อาจารย์ที่ปรึกษาหลัก
ศ. ดร. จีรเดช มโนสร้อย
อาจารย์ที่ปรึกษาร่วม
ศ. ดร. โยชิอากิ คาวาชิมา
อาจารย์ที่ปรึกษาร่วม
ผศ. ดร. เกษรา ปัทมพันธุ์
อาจารย์ที่ปรึกษาร่วม

บทคัดย่อ

งานวิจัยนี้มีวัตถุประสงค์เพื่พัฒนาระบบนำส่งผ่านผิวหนังที่เหมาะสมของเปปไทด์เอนไซม์จากธรรมชาติที่เก็บกักในอนุภาคขนาดนาโนเพื่อรักษาแผลเป็น โดยพัฒนาไมโอโซมแบบยืดหยุ่นที่มีความเป็นพิษต่ำที่ประกอบด้วยสับประรด (Ananas comosus) และผลสับประรด (Carica papaya) โดยมีแคลซิโทนินเป็นเปปไทด์ต้นแบบ พบว่าไมโอโซมแบบยืดหยุ่นที่ประกอบด้วย 5% โซเดียมโคเลท (NaC) มีความเหมาะสมที่สุดสำหรับเก็บกักเปปไทด์เนื่องจากมีความอิสระที่สูงและมีความเป็นพิษต่ำ แต่ไมโอโซมแบบไม่ยืดหยุ่นเพิ่มความคงตัวทางเคมีเมื่อเก็บไว้ที่อุณหภูมิสูงและการสูญเสียค่าคงตัวนั้นมีปัจจัยเทียบกับสารละลายแอนติออกซิเดนท์ ซึ่งเป็นเอนไซม์โปรติย์สที่มีอยู่ในยางมะละกอ (Carica papaya) และผลสับประรด (Ananas comosus) ด้วยวิธีการตกตะกอนด้วย 95% เอนธอนอลและเอทานอลเพื่อนำสู่การตกตะกอน ตามลำดับ การแยกแยะเหนือไม่ใช้ผลสัตว์ที่สดแล้วได้กับสารมาตรฐานเอนไซม์และโปรติย์สมาตรฐานด้วยวิธีเดียบได้รีซัลซัลเฟต พอลิอะคริลาไมด์เจเลปิโตรไฟซิส เมื่อวิเคราะห์ด้วยเทคนิคโครมาโทกราฟีของเหลวสมรรถนะสูงพบว่าเป็น
และโปรตีนที่สกัดได้มีความบริสุทธิ์ 82.31 และ 38.03% ตามลำดับ เอนไซม์สกัดมีสมบัติทางกายภาพและเคมี (การละลายและความคงตัวในสารเคมีต่างๆ) คล้ายกับโปรตีนมาตรฐาน เมื่อนำผลตอบยุทธ์ตัวปฏิกิริยาออกซิเดชั่นระหว่างโปรตีนมาตรฐานและโปรตีนสกัด แต่โปรตีนสกัดมียุทธ์ตัวปฏิกิริยาออกซิเดชั่นต่ำกว่าโปรตีนมาตรฐาน เอนไซม์นี้ประกอบของธาตุด้ำนเป็นฟิลาเม็ทเตอร์โปรตีน-2 (MMP-2) ในเซลล์ไปปรับสภาพของผิวหนังมนุษย์ โปรตีนสกัดมียุทธ์กระตุ้น MMP-2 สูงกว่ากลุ่มควบคุม โปรตีนมาตรฐาน โปรตีนสกัดและโปรตีนสกัด 2.10, 1.04, 1.31 และ 1.24 คำ ตามลำดับ เมื่อกักกันโปรตีนและโปรตีนสกัดในโปรตีนแบบเยลลูเป็นพยัญชนะที่มีขนาดนูนดั้ง 109.5 ถึง 143.9 นาโนเมตรและค่าศักย์จุลที่เป็นลบ (-14.7 ถึง -30.1 มิลลิโวลท์) และมีรูปร่างกลมที่ประกอบด้วยพนังชั้นเดียว เมื่อวัดความดันของเป็นรูปที่มีค่าการทดสอบส่งผ่านเนื้อผิวจากโปรตีนแบบเยลลูที่นิโอโซมสกัดจะช่วยเพิ่มประสิทธิภาพการเก็บกักเอนไซม์ได้มากกว่าโปรตีนแบบเยลลู เอนไซม์สกัดไม่กระตุ้น MMP-2 เมื่อเก็บกักโปรตีนที่ไม่ถูกเก็บกัก โดยโปรตีนมาตรฐาน โปรตีนสกัด โปรตีนสกัดและโปรตีนสกัดที่เก็บกักในโปรตีนแบบเยลลูมีกุทธิกระตุ้น pro MMP-2 เท่ากับ 1.26, 1.34, 1.09 และ 1.20 และกระตุ้น active MMP-2 เท่ากับ 1.26, 1.41, 1.01 และ 1.03 เท่าของกลุ่มควบคุมตามลำดับ สำหรับโปรตีนสกัดที่เก็บกักในโปรตีนแบบเยลลูมีที่มีสมบัติ (ความเป็นพนังชั้นและยุทธ์กระตุ้น MMP-2 สูง) เหมือนกันกับโปรตีนอื่นๆ โปรตีนแบบเยลลูมีพนังชั้นที่สามารถควบคุมกับโปรตีนสกัดโดยมีปริมาณเอนไซม์ที่เหลืออยู่มากกว่าเอนไซม์ที่ไม่ถูกเก็บกักและเอนไซม์ที่เก็บกักในโปรตีนแบบเยลลูมีที่มีดั้ง (4 ± 2, 27 ± 2 และ 45 ± 2 องศาเซลเซียส) เป็นเวลา 8 สัปดาห์ สำหรับโปรตีนมาตรฐานที่เก็บกักในโปรตีนเยลลูในประสิทธิ์ที่เห็นด้วยวิธีการกระดาษของตัวที่เก็บกักในยูทธ์กระตุ้น MMP-2 ของภาพการเยลลูเอนไซม์เป็นอนุภาคขนาดเล็กและมีการกระจายของเอนไซม์ขนาดเล็กว่าเมื่อเทียบกับเอนไซม์ ESE อนุภาคที่รวดเร็วได้มีรูปร่างกลมและมีรูปร่างฝั่งวิวัฒนาการตัวที่เก็บกักของยูทธ์กระตุ้น MMP-2 และผลการทดลองดังกล่าวของตัวที่เก็บกักในยูทธ์กระตุ้น MMP-2 ของภาพการเยลลูเอนไซม์เป็นอนุภาคขนาดเล็กและมีการกระจายของเอนไซม์ขนาดเล็กว่าเมื่อเทียบกับเอนไซม์ ESE อนุภาคที่รวดเร็วได้มีรูปร่างกลมและมีรูปร่างฝั่งวิวัฒนาการตัวที่เก็บกักของยูทธ์กระตุ้น MMP-2 และผลการทดลองดังกล้า
เป็น 2 วิธี อย่างไรก็ตามการปลดปล่อยบ้านในไนssid ระยะวันที่ 2 วิธีมีลักษณะเป็นสองเฟส โดยใน 6 ชั่วโมงแรกมีการปลดปล่อยแบบทันที จากนั้นจึงต่ออายุปลดปล่อยเป็นเวลา 48 ชั่วโมง แต่เปลวที่ปลดปล่อยในไนssidที่เตรียมด้วยวิธี ESE ถูกปลดปล่อยในระยะแรกได้เร็วกว่าจากวิธี ESD อนุภาคไนssidปล่อยจากการเตรียมที่ 2 วิธีไม่เป็นพิษต่อเซลล์ในชั่วโมงแรกที่ปลดปล่อยที่ไม่ปลดปล่อยกักเป็นที่ยอมรับแล้วมากกว่าในชั่วโมงที่ 1.5 เท่า นอกจากนี้การปลดปล่อยที่เก็บกักในไนssidที่เตรียมด้วยวิธี ESE มีความคงตัวทางเคมีมากกว่าในชั่วโมงที่ปลดปล่อยที่ไม่ปลดปล่อยกัก 8 และ 3 เท่าเมื่อกับ 42 เท่าที่จุดทุ่งนมู่ 4±2 และ 27±2 ของเซลล์พิษเป็นเวลา 6 ชั่วโมงตามลำดับ จากการศึกษาอัตรากำลังการปลดปล่อยที่เก็บกักในไนไนไนจี โนจีไนนีโอโซมแบบไม่ยืดหยุ่น (GNN) พบว่าอนุภาคที่ไม่ปลดปล่อยในไนไนจี โนจีไนนีโอโซมที่ปลดปล่อยกักในชั่วโมงแรกในนาโนเมตร ขนาด 220.7 ถึง 520.2 นาโนเมตร และ GEN สามารถเข้าสู่หนังสุขได้ดี โดยมีปริมาณสะสมและอัตราการซึมผ่านผิวหนังมากกว่า GNN, GPN และปลดปล่อยที่ปลดปล่อยกัก (GS) ตัวรับออกถูกปล่อยไปได้ดี ค่า PI (primary irritation index) น้อยกว่า 0.00-0.44 ยกเว้น GS ที่ซึ่งมีค่า PI น้อยที่สุด 0.78 นอกจากนี้ GEN ยังมีความคงตัวมากกว่า GS เป็น 1.13, 1.29 และ 1.35 เท่าเมื่อเทียบกับทุ่งนมู่ 4±2, 27±2 และ 45±2 ของเซลล์พิษเป็นเวลา 3 เดือน หลังจากปลดปล่อยเป็นอุณหภูมิ 28 องศาเซลเซียส แผลเป็นที่ GEN สามารถลดรอยแผลเป็นได้ 29.17% ซึ่งมีเหตุผลว่าผลิตภัณฑ์ในท้องตลาด 1.10 เท่า การศึกษาได้แสดงให้เห็นถึงประสิทธิภาพของนีโอโซมเฉพาะนีโอโซมแบบยืดหยุ่นในการเพิ่มการซึมผ่านฟันนังและการลดรอยแผลเป็นในอนุภาคของแป้งได้ดีขึ้นสามารถนำไปประยุกต์เพื่อใช้สำหรับฟันหัมในการรักษาผลได้ดี