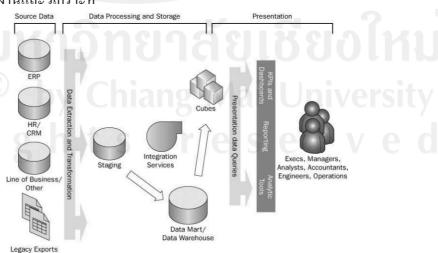
บทที่ 2 เอกสารและงานวิจัยที่เกี่ยวข้อง

การศึกษาค้นคว้าแบบอิสระการพัฒนาระบบธุรกิจชาญฉลาดสำหรับกระบวนการค้านจดหมาย ติดต่อระหว่างเด็กและผู้อุปการะขององค์กรคอมแพสชั่นอินเตอร์เนชั่นแนล ผู้ศึกษาได้รวบรวม แนวคิดศึกษาเอกสารและงานวิจัยที่เกี่ยวข้องดังต่อไปนี้

2.1 ความสำคัญของจดหมายและกระบวนการด้ำนจดหมาย

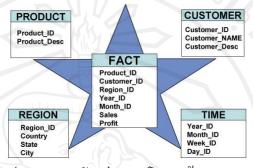
Compassion International (2009) ได้กล่าวไว้ว่า วัตถุประสงค์ของการเขียนจดหมายของเด็ก คือเพื่อกระชับความผูกพันระหว่างผู้อุปการะกับเด็ก โดยผ่านทางการเขียนจดหมายที่สม่ำเสมอ โดย กำหนดมาตรฐานไว้ว่า เด็กทุกคนที่มีผู้อุปการะจะต้องเขียนจดหมายถึงผู้อุปการะอย่างน้อย 3 ฉบับ ต่อปี และถ้าเด็กได้รับผู้อุปการะใหม่ ได้รับของขวัญพิเสษ หรือได้รับจดหมายจากผู้อุปการะ เด็ก จะต้องเขียนจดหมายแนะนำตัว ขอบคุณ หรือตอบจดหมายผู้อุปการะภายในระยะเวลา 60 วัน โดย กำหนดมาตรฐานทางด้านความตรงต่อเวลาไว้ว่า จะต้องมีอัตราส่วนความตรงเวลาของจดหมายที่ ครบกำหนดมากกว่า 95 เปอร์เซ็นต์ของจดหมายที่ครบกำหนดทั้งหมด

ขั้นตอนการเขียนจดหมายเด็ก ประกอบไปด้วยขั้นตอน การสร้างกำร้อง (Generate Child Letter Request) คือกระบวนการที่ระบบตรวจสอบดูว่ามีเด็กคนใดบ้างที่ครบกำหนดการเขียน จดหมายแล้ว การเตรียมเอกสารการเขียนจดหมายและส่งให้กับโครงการพัฒนาเด็ก (Send to Project) คือกระบวนการคัดแยกคำร้องออกตามรหัสของโครงการพัฒนาเด็กของคอมแพสชั่น จัดพิมพ์บาร์โค้ดที่ประกอบไปด้วยรหัสเด็กและรหัสผู้อุปการะ ใบปะหน้า (packing list) ซึ่งแสดง รายชื่อเด็กในโครงการพัฒนาเด็กที่ครบกำหนดการเขียนจดหมาย ซึ่งเจ้าหน้าที่ส่งให้กับโครงการ พัฒนาเด็กที่ตั้งอยู่ในจังหวัดต่าง ๆ ต่อไป การรับจดหมายจากโครงการ (Receive from Project) คือ การรับจดหมายเด็กที่ส่งกลับมาจากโครงการพัฒนาเด็กในจังหวัดต่าง ๆ โดยลงบันทึกวันที่ได้รับ การแปลจดหมาย (Send to Translator) คือการจัดทำรายการส่งให้ผู้แปลแต่ละคน การรับจดหมาย แปลแล้ว (Receive from Translator) คือการลงบันทึกรับจดหมายแปลแล้ว การจัดส่งจดหมายตอบ (Submit Child Letter) คือการแยกจดหมายออกตามประเทศผู้อุปการะ จากนั้นสแกนจดหมาย ส่งออก ระบบจะทำการจัดส่งใบปะหน้าอิเลคทรอนิกส์ไปยังระบบคอมพิวเตอร์ศูนย์กลาง หลังจาก นั้นเจ้าหน้าที่จะทำการจัดส่งตัวจดหมายฉบับจริงไปยังประเทศปลายทางเพื่อส่งต่อให้กับผู้อุปการะ


ต่อไป และท้ายสุดคือกระบวนการให้เครดิต (Credit Child Letter) โดยระบบจะบันทึกวันที่ที่ได้รับ จดหมาย และใช้เป็นกำหนดเวลาที่เด็กจะต้องเขียนจดหมายครั้งต่อไป

2.2 ระบบธุรกิจชาญฉลาด

Steve และ Nancy (2550) ได้กล่าวถึงธุรกิจชาญฉลาด (Business Intelligence) โดยสรุป ความหมายได้ว่า ธุรกิจชาญฉลาดคือการผสมผสานระหว่างผลิตภัณฑ์ทางเทคโนโลยีสารสนเทศ และวิธีการรวบรวมสารสนเทศที่สำคัญ ๆ ในองค์กรซึ่งผู้บริหารต้องการใช้ประกอบการตัดสินใจ เป็นสารสนเทศทางธุรกิจและการวิเคราะห์ทางธุรกิจ ที่นำไปสู่การตัดสินใจและการปฏิบัติซึ่งส่งผล ทำให้เกิดการพัฒนาด้านประสิทธิภาพการดำเนินงานของธุรกิจ

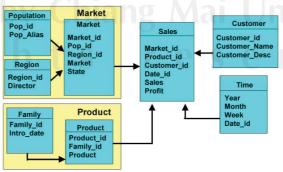

2.3 ระบบคลังข้อมูลและตลาดข้อมูล

Erik และคณะ (2553) กล่าวว่า อีทีแอล (ETL) ย่อมาจาก การสะกัด (Extraction) การแปลง (Transformation) และการบรรจุ (Loading) ซึ่งใช้เรียกกระบวนการประมวลผลข้อมูลในการ แก้ปัญหาด้วยการบรูณาการข้อมูล หรือคลังข้อมูล การสร้างคลังข้อมูลมุ่งเน้นไปที่การสนับสนุน การตัดสินใจ หรือทำให้เกิดการตัดสินใจที่ดีขึ้นโดยผ่านทางการจัดระเบียบการเข้าถึงสารสนเทศ ซึ่ง ตรงกันข้ามกับระบบประมวลผลรายการ เช่น ระบบ ณ จุดขาย ระบบบริหารทรัพยากรมนุษย์ หรือ ระบบลูกค้าสัมพันธ์ ที่ถูกออกแบบให้สามารถทำรายการและจัดเก็บข้อมูลได้อย่างรวดเร็ว ในขณะ ที่คลังข้อมูลจะได้รับการปรับแต่งให้เหมาะสมสำหรับทำการรายงานสรุปและการวิเคราะห์ การ ดำเนินกระบวนการอีทีเอลสำหรับคลังข้อมูลประกอบไปด้วยการสะกัดข้อมูลจากแหล่งข้อมูล หรือ แฟ้มข้อมูล จากนั้นทำการแปลงข้อมูล (เทียบเคียง ชำระล้าง และรวบรวม) จากนั้นบรรจุข้อมูลลงใน คลังข้อมูลเพื่อการรายงานและวิเคราะห์

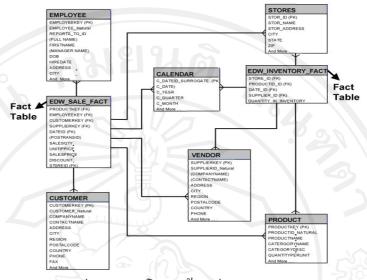
รูป 2.1 แสดงสถาปัตยกรรมการประมวลผลข้อมูลทั่วไปสำหรับระบบคลังข้อมูล

Chuck และคณะ (2549) ได้กล่าวว่า แบบจำลองเชิงมิติ (Dimensional Model) หรือโดยทั่วไป เรียกว่าโครงสร้างรูปดาว (Star Schema) ได้รับความนิยมอย่างสูงในการนำไปใช้เป็นโครงสร้างของ คลังข้อมูล เพราะว่ามีประสิทธิภาพในการสอบถามข้อมูลสูงกว่าแบบจำลองแบบอี/อาร์มาก โดยเฉพาะการสอบถามข้อมูลที่มีขนาดใหญ่มาก ๆ นอกจากนี้ยังสามารถทำความเข้าใจได้ง่าย โดยทั่วไปโครงสร้างรูปดาวประกอบด้วยตารางข้อเท็จจริงขนาดใหญ่ และมีตารางข้อมูล รอบ ๆ ซึ่งใช้บอกประเภทหรือลักษณะข้อมูลซึ่งเรียกว่ามิติ

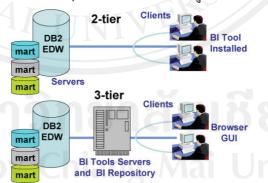
รูป 2.2 แสดงตัวอย่างของโครงสร้างแบบดาว


โดยพื้นฐานแล้วมีแบบจำลองเชิงมิติมี 3 แบบคือ โครงสร้างรูปดาว (Star Schema) โครงสร้าง รูปเกล็ดหิมะ (Snowflake Schema) และ โครงสร้างรูปดาวหลายดวง (Multi-Star Schema)

รูป 2.3 แสดงแบบจำลองเชิงมิติแบบต่าง ๆ


โครงสร้างรูปดาวมีตารางข้อเท็จจริงหนึ่งตาราง และตารางมิติหลายตาราง ซึ่งตารางมิติจะ ไม่มี การดีนคร์มัล ไลซ์

ในโครงสร้างรูปเกล็ดหิมะตารางมิติจะ ได้รับการนอมัล ไลซ์และแตกขยายออก ไปอีก มิติจะ เป็นเกล็ดหิมะ ได้เมื่อคอลัมน์ในตารางมิติที่มีความแตกต่างกันของข้อมูลน้อยถูกแยกออก ไปเป็น ตารางใหม่


รูป 2.4 แสดงโครงสร้างรูปเกล็ดหิมะ

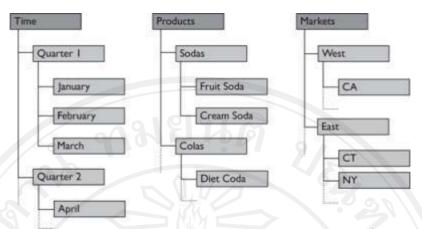
โครงสร้างรูปดาวหลายควงเป็นแบบจำลองเชิงมิติที่ประกอบด้วยตารางข้อเท็จจริงหลายตาราง ต่อเข้าด้วยกันโดยผ่านตารางมิติต่าง ๆ

รูป 2.5 แสดงโครงสร้างรูปดาวหลายควง

เครื่องมือที่ใช้ในการวิเคราะห์ข้อมูลเพื่อการรายงานนั้น โดยทั่วไปแล้วสามารถแบ่งลักษณะ ทางสถาปัตยกรรมได้เป็น 2 ลักษณะหลัก ๆ คือ สถาปัตยกรรมแบบ 2 ชั้น ที่เครื่องมือรายงานด้าน ธุรกิจชาญฉลาดได้รับการติดตั้งบนเครื่องคอมพิวเตอร์ลูกข่าย และเข้าถึงข้อมูลในคลังข้อมูลหรือ ตลาดข้อมูลได้โดยตรง และสถาปัตยกรรมแบบ 3 ชั้น เครื่องมือรายงานด้านธุรกิจชาญฉลาดจะ ได้รับการติดตั้งบนเซิร์ฟเวอร์ และผู้ใช้เข้าถึงข้อมูลในคลังข้อมูลหรือตลาดข้อมูลโดยผ่านทางเว็บ เบราเซอร์ ไม่จำเป็นต้องติดตั้งเครื่องมือใด ๆ บนคอมพิวเตอร์ของผู้ใช้

รูป 2.6 แสดงลักษณะทางสถาปัตยกรรมของระบบธุรกิจชาญฉลาด

Inmon และคณะ (2544) กล่าวว่า ตลาดข้อมูล (data mart) คือ กลุ่มของข้อมูลที่เก็บรวบรวมไว้ เพื่อสนับสนุนกระบวนการตัดสินใจอย่างเฉพาะเจาะจงของแผนกหนึ่ง ๆ ในองค์กร อาจเป็นหน่วย ย่อยของคลังข้อมูล (Data warehouse) ที่ได้รับการปรับแต่งให้เหมาะสมกับความต้องการของแผนก ใดแผนกหนึ่ง โดยทั่วไปแล้วข้อมูลในตลาดข้อมูลจะถูกดืนอร์มัลไลซด์ (De-normalized) ปรับแต่ง

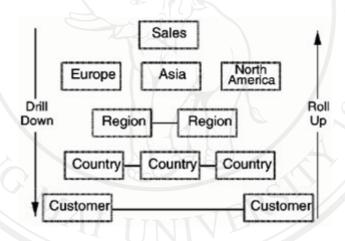

และสรุปมาแล้วจากกระบวนการสร้างคลังข้อมูล ส่วนมากใช้ในแผนกการตลาด การเงิน การบัญชี วิศวกรรม และคณิตศาสตร์ประกันภัย

Brian (2551) ได้กล่าวถึงขั้นตอนการออกแบบตลาดข้อมูลว่าการจะต้องเริ่มต้นด้วยการมีส่วน ร่วมของผู้มีอำนาจการตัดสินใจ โดยผู้มีอำนาจตัดสินใจจะต้องเป็นผู้กำหนดว่าต้องการข้อมูล อะไรบ้าง ข้อมูลจะต้องถูกตัดแบ่ง และจัดสร้างเป็นลูกบาศก์เพื่อการวิเคราะห์ในลักษณะใด และ จะต้องตอบคำถามเรื่องอะไรบ้าง หลังจากนั้นจะต้องมีการตรวจสอบว่า ข้อมูลต่าง ๆ ที่ต้องการนั้นมี อยู่ในระบบประมวลผลออนไลน์หรือไม่ ถ้าไม่มีจะสามารถหาข้อมูลเหล่านั้นจากแหล่งอื่น ๆ ได้ หรือไม่ หรืออาจต้องตัดสินใจร่วมกันผู้มีอำนาจการตัดสินใจว่าจะจัดหาข้อมูลทดแทนในลักษณะ อื่นได้หรือไม่ หรือว่าจะต้องสร้างระบบเก็บข้อมูลขึ้นใหม่

2.4 การวิเคราะห์ประมวลผลออนไลน์

Michael และคณะ (2553) กล่าวถึงการวิเคราะห์ประมวลผลออนไลน์หรือโอแลป (Online Analytical Process: OLAP) สรุปได้ว่า เป็นเทคโนโลยีที่สนับสนุนกิจกรรมทางธุรกิจได้ตั้งแต่การ วิเคราะห์และการจัดทำรายงานด้วยตัวเองไปจนถึงโปรแกรมประยุกต์ที่พัฒนาขึ้นด้วยวัตถุประสงค์ ด้านการบริหารจัดการ เช่น ระบบสนับสนุนการวางแผนและการจัดทำงบประมาณ สิ่งที่ทำให้ ระบบโอแลปมีความแตกต่างจากการรายงานทางธุรกิจทั่วไปคือระบบมีความสามารถในการ วิเคราะห์ได้ ระบบโอแลปช่วยให้เข้าถึงข้อมูลและการคำนวณที่เกี่ยวข้องเพื่อการวิเคราะห์และการ จัดทำรายงานได้ง่ายและรวดเร็ว ช่วยเพิ่มสักยภาพของคลังข้อมูลหรือฐานข้อมูลเชิงสัมพันธ์ อื่น ๆ ให้มีความสามารถในการรวบรวมข้อมูลและการคำนวณทางธุรกิจ นอกจากนี้การที่ผู้ใช้ ทางค้านธุรกิจสามารถทำรายงานและการวิเคราะห์ด้วยตัวเองช่วยลดความต้องการทรัพยากรด้าน เทคโนโลยีสารสนเทศอีกด้วย

โอแลปใช้วิธีการเชิงมิติเพื่อจัคระเบียบและวิเคราะห์ข้อมูล ซึ่งข้อมูลจะถูกจัดให้อยู่ในรูปแบบ หลายมิติเพื่อสะท้อนภาพการดำเนินการทางธุรกิจ ยกตัวอย่างเช่นผู้ใช้อาจจะพิจารณาข้อมูลการขาย โดยแยกตามผลิตภัณฑ์ ตามตลาดและตามช่วงเวลา มิติสามารถกำหนดได้ตามคุณลักษณะหรือ กุณสมบัติของชุดข้อมูล ซึ่งแต่ละมิติประกอบด้วยสมาชิกที่มีคุณลักษณะเหมือน ๆ กัน และสามารถ ให้อยู่ในรูปแบบลำดับชั้นได้ ตัวอย่างเช่น รูป 2.7 ประกอบด้วยมิติด้านเวลาประกอบด้วย ปี จากนั้น แยกออกเป็นไตรมาส และแต่ละไตรมาสแยกออกเป็นเดือน มิติด้านผลิตภัณฑ์ประกอบด้วย กลุ่ม ผลิตภัณฑ์ และจากนั้นแยกออกไปอีกจนถึงผลิตภัณฑ์ต่าง ๆ มิติด้านการตลาดประกอบด้วยภูมิภาค ต่าง ๆ ซึ่งแยกออกไปอีกจนระดับถึงรัฐต่าง ๆ



รูป 2.7 ตัวอย่างของมิติและสมาชิกที่จัดให้อยู่ในรูปลำดับชั้น ในระบบโอแลป มีการนำข้อมูลมาสรุปรวบรวม และคำนวณไว้ล่วงหน้าเพื่อให้สามารถเรียกใช้ ข้อมูลเพื่อตอบคำถามได้อย่างรวดเร็ว ตัวอย่างของวิธีการคำนวณเชิงธุรกิจในระบบโอแลปได้แก่

- 1) การรวบรวมข้อมูลเพื่อสรุปตามตามลำดับชั้น เช่น การสรุปยอดขายรายสัปดาห์ ราย ใตรมาส และรายปี
- 2) การคำนวณอนุกรมเวลาด้วยความชาญฉลาดด้านเวลา เช่น สัดส่วนความแตกต่างจากปี ที่แล้ว ค่าเฉลี่ยเคลื่อนที่
- 3) การคำนวณแบบเมทริกซ์ (Matrix) หรืออินทราไดเมนชั่น (Intradimension) เช่น การ ใช้ค่าผลรวม ค่าความแปรปรวนหรือค่าดัชนีร่วมกัน
- 4) การคำนวณแบบข้ามมิติ (Cross Dimension) หรือการคำนวณแบบอินเทอร์ไดเมนชั่น (Interdimensional Calculation) เช่น การคำนวณหาค่าดัชนีค่าใช้จ่ายของประเทศหนึ่งเปรียบเทียบ เป็นอัตราส่วนต่อรายได้รวมของอีกประเทศหนึ่ง
- 5) การคำนวณเชิงขั้นตอน (Procedural Calculation) มีการกำหนดกฎเกณฑ์การคำนวณ และการคำเนินการคำนวณตามลำดับที่กำหนดไว้อย่างเจาะจง เช่น การจัดสรรค่าใช้จ่ายที่ใช้ร่วมกัน ระหว่างผลิตภัณฑ์ ในรูปแบบเปอร์เซ็นต์ของเงินรายได้สมทบต่อผลิตภัณฑ์ ซึ่งต้องใช้ตรรกะเชิง กระบวนการในการสร้างแบบจำลองและการดำเนินการด้านกฎเกณฑ์ทางธุรกิจที่ซับซ้อน
- 6) การคำนวณแบบโอแลปอแวร์ (OLAP Aware) เช่น การเรียงลำดับตามตำแหน่ง (Ranking) และความสัมพันธ์แบบลำดับชั้น การคำนวณเหล่านี้รวมถึงความชาญฉลาดด้านเวลาและ ความชาญฉลาดด้านการเงิน เช่น โอแลปอแวร์จะทราบว่ายอดสินค้าคงคลังสิ้นสุดไตรมาสที่หนึ่ง หมายถึงยอดเมื่อสิ้นสุดเดือนมีนาคม ไม่ใช่ยอดรวมของเดือนมกราคม กุมภาพันธ์ และมีนาคม
 - 7) การคำนวณตามสูตรที่ผู้ใช้กำหนดเอง

2.5 เทคนิคการวิเคราะห์หลายมิติ

Chuck และคณะ (2549) ได้กล่าวถึงเทคนิคการวิเคราะห์หลายมิติโดยสรุปได้ว่า เทคนิคการ วิเคราะห์หลายมิติเป็นวิธีการที่ได้รับความนิยมเพื่อขยายความสามารถของการสอบถามข้อมูลและ การเสนอรายงาน ซึ่งข้อมูลจะได้รับการรวบรวมและคำนวณไว้ล่วงหน้าเพื่อตอบคำถามต่าง ๆ ที่ ผู้ใช้ต้องการ แล้วจัดเก็บเป็นโครงสร้างที่ทำงานได้รวดเร็วและใช้งานง่าย เช่น ยอดขายของ ผลิตภัณฑ์แต่ละชนิดเป็นเท่าไร? โดยดูตามยอดขายในแต่ละวัน ดูตามพนักงานขายแต่ละคน ดูตาม ร้านค้าแต่ละแห่ง แต่ละส่วนย่อยของคำถามเรียกว่ามิติ ซึ่งกรณีของคำถามนี้คือ มิติด้านผลิตภัณฑ์ มิติด้านวันที่ มิติด้านพนักงานขาย และมิติด้านร้านค้า การวิเคราะห์หลายมิติทำให้ผู้ใช้สามารถ พิจารณาปัจจัยต่าง ๆ ที่มีความสัมพันธ์และส่งผลกระทบต่อกันและกันอย่างซับซ้อนระหว่างมิติ ต่าง ๆ ได้ ผู้ใช้สามารถสำรวจข้อมูลในระดับที่มีรายละเอียดแตกต่างกันได้หลายระดับ สามารถ เจาะลึกเพื่อดูรายละเอียดที่มากขึ้น หรือดูข้อมูลแบบสรุปในภาพรวม

รูป 2.8 แสดงการเจาะลึกเพื่อพิจารณารายละเอียดข้อมูลจนถึงระดับที่ละเอียดที่สุด หรือการพิจารณาในระดับสรปภาพรวม

จากรูป 2.8 ผู้ใช้สามารถเริ่มด้วยการคูยอดขายทั้งหมดขององค์กร แล้วหลังจากนั้นทำการ เจาะลึกเพื่อคูยอดขายตามทวีป ภูมิภาค ประเทศ และตามลูกค้า หรือผู้ใช้สามารถเริ่มต้นด้วยการคู ยอดขายตามลูกค้า จากนั้นสรุปข้อมูลย้อนกลับขึ้นไปยังระดับที่มีการสรุปข้อมูลมากขึ้น จนกระทั่ง ถึงการสรุปยอดขายทั้งหมดขององค์กร ผู้ใช้ยังสามารถหมุนแกนเพื่อการวิเคราะห์ข้อมูลโดยใช้ มุมมองที่ต่าง ๆ กันในการวิเคราะห์ด้วยการเปลี่ยนรูปแบบการจัดเรียงมิติใหม่ เทคนิคในการ วิเคราะห์หลายมิติมีดังต่อไปนี้

- 1) การสไลซ์และการไคซ์ (Slice and Dice)
- (1) การสไลซ์ (Slice) หรือการพิจารณาผลลัพธ์เพียงบางส่วนคือการแยกเอาสมาชิก หรือกลุ่มของสมาชิกออกจากมิติหนึ่งใดมิติหนึ่ง เพื่อการประมวลผลข้อมูลโดยเปรียบเทียบผลลัพธ์

ที่ได้กับมิติอื่น ๆ สมาชิกของมิติคือค่าของข้อมูลภายในคอลัมน์ของมิตินั้น ยกตัวอย่างเช่น หากมี ข้อมูลสามมิติคือ มิติด้านผลิตภัณฑ์ มิติด้านร้านค้า มิติด้านวันที่ และมีตารางข้อเท็จจริงหนึ่งตาราง เรียกว่าการขาย การทำสไลซ์ข้อมูลในกรณีตัวอย่างนี้เป็นการแยกสมาชิกบางตัวออกจากมิติด้าน ผลิตภัณฑ์คือ โซดา นม และน้ำผลไม้ จากนั้นหาผลรวมของยอดขายจากร้านค้าแต่ละแห่งและวันที่ แต่ละวัน โดยเปรียบเทียบยอดขายระหว่างโซดา นม และน้ำผลไม้ในมิติผลิตภัณฑ์ รูป 2.9 แสดงให้ เห็นว่าผลิตภัณฑ์โซดามียอดขายน้อยที่สุดเมื่อเทียบกับนม และน้ำผลไม้

(For ALL Stores and Dates)

Product	Sales in USD
Soda	2,530
Milk	3,858
Juice	15,396
Total	21,784

รูป 2.9 การสไลซ์มิติข้อมูลด้านผลิตภัณฑ์

(2) การไดซ์ (Dice) เป็นการวางสมาชิกจากมิติหนึ่งบนแกนหนึ่ง และนำเอาสมาชิก จากอีกมิติหนึ่งวางลงบนอีกแกนหนึ่ง เพื่อพิจารณาผลลัพธ์และความสัมพันธ์ต่อกันและกันระหว่าง สมาชิกจากมิติที่ต่างกัน ในรูป 2.10 มี CA OR LA เป็นสมาชิกจากมิติด้านร้านค้าแสดงรายการใน แนวตั้ง และมีสมาชิกหลายตัวจากมิติด้านวันที่แสดงรายการในแนวนอน ทำให้เห็นถึง ความสัมพันธ์ระหว่างสมาชิกของมิติด้านร้านค้ากับสมาชิกของมิติด้านวันที่

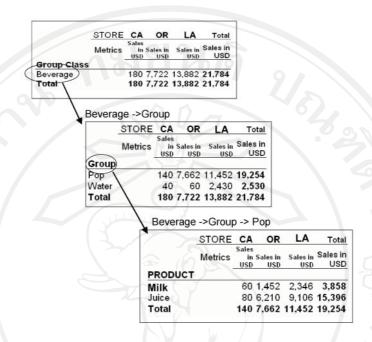
		DATE	1/1/2005	1/2/2005	1/3/2005	Total
		Metrics	Sales in USD	Sales in USD	Sales in USD	Sales in USD
Į	STORE					
	CA		40	50	90	180
	OR		3,115	3,340	1,267	7.722
	LA		1,583	7,418	4,881	13,882
	Total		4,738	10,808	6.238	21,784

รูป 2.10 การใคซ์โดยพิจารณาความสัมพันธ์ระหว่างมิติด้านร้านค้าบนแกนตั้ง กับมิติด้านวันที่บนแกนนอน

	PRODUCT	Milk	Coke	Juice	Total
ı	Metrics		Sales in	Sales in	Sales in USD
STORE					
CA		40	60	80	180
OR		60	1,452	6,210	7,722
LA		2,430	2,346	9,106	13,882
Total		2,530	3,858	15,396	21,784

รูป 2.11 การใดซ์โดยพิจารณาความสัมพันธ์ระหว่างมิติด้านร้านค้าบนแกนตั้ง และมิติด้านผลิตภัณฑ์บนแกนนอน

2) การทำพิวอทิ่ง (Pivoting) หรือการหมุนรอบแกนคือการสับเปลี่ยนที่กันระหว่างข้อมูล ที่แสดงในแถวกับข้อมูลที่แสดงในคอลัมน์ รูป 2.11 แสดงตัวอย่างของการทำพิวอทิ่ง โดยสลับแถว ที่แสดงมิติด้านร้านค้ากับคอลัมน์ของสมาชิกของมิติด้านผลิตภัณฑ์ การสลับแถวกับคอมลัมน์นี้ทำ ให้การพิจารณาข้อมูลเดียวกันจากหลาย ๆ มุมมองทำได้ง่าย

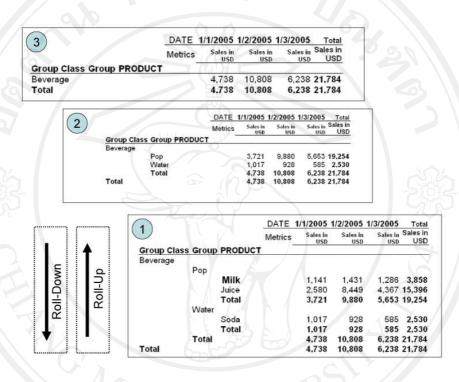

	PRODUCT	Milk	Coke	Juice	Total
	Metrics	Sales in USD	Sales in USD	Sales in USD	Sales in USD
STORE		di.			4
CA		40	60	80	180
OR		60	1,452	6,210	7,722
LA		2,430	2,346	9,106	13,882
Total		2,530	3,858	15,396	21,784

	STORE	CA	OR	LA	Total
	Metrics	Sales in USD	Sales in USD	Sales in USD	Sales in USD
PRODUCT					
Soda		40	60	2,430	2,530
Milk		60	1,452	2,346	3,858
Juice		80	6,210	9,106	15,396
Total		180	7.722	13,882	21.784

รูป 2.12 แสดงการทำพิวอทิ่ง

3) การเจาะลึก (Drill down) และการเจาะขึ้น (Drill up) คือการเจาะข้อมูลจากระดับ ชั้นหนึ่งลึกลง ไปถึงข้อมูลของระดับชั้นรองลง ไป เป็นความสามารถในการเรียกคูข้อมูล โดย พิจารณาขึ้นหรือลง ไปตาม โครงสร้างลำดับชั้น ในรูป 2.13 แสดงให้เห็นถึงการเจาะลึกผ่านสาม ลำดับชั้นในมิติด้านผลิตภัณฑ์ โดยลำดับชั้นเริ่มต้นจากประเภทของกลุ่มผลิตภัณฑ์ (Group – Class) เจาะลึกลง ไปยังกลุ่มผลิตภัณฑ์ (Group) จากนั้นเจาะลึกลง ไปยังผลิตภัณฑ์ (Product) เมื่อเจาะลึกลง ไปยังระดับประเภทของกลุ่มผลิตภัณฑ์จะ ได้รายละเอียดของผลิตภัณฑ์ซึ่งเป็นข้อมูล ในระดับรายละเอียดมากที่สุด

ของมิติด้านผลิตภัณฑ์ คือรายการผลิตภัณฑ์ต่าง ๆ ส่วนการเจาะขึ้นเป็นการกระทำในลักษณะ เดียวกันกับการเจาะลึกแต่กระทำในทิศทางตรงกันข้ามกับการเจาะลึก

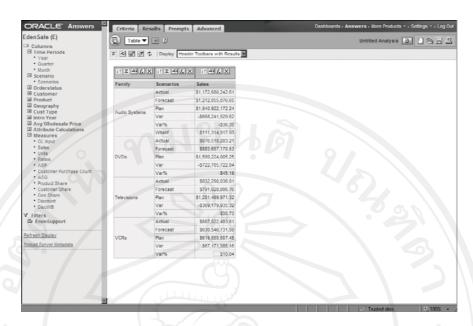

รูป 2.13 แสดงการเจาะลึกลงใปในมิติด้านผลิตภัณฑ์

4) การเจาะข้าม (Drill Across) เป็นวิธีการวิเคราะห์ที่เจาะข้ามจากมิติหนึ่งไปยังมิติอื่น โดยจะต้องกำหนดเส้นทางการเจาะข้ามให้ชัดเจน จากรูป 2.14 แสดงการเจาะข้ามจากสมาชิก CA ในมิติด้านร้านกำไปยังมิติด้านผลิตภัณฑ์ ตารางแรกบอกถึงยอดขายในแต่ละร้านกำในสามรัฐคือ CA OR และ LA โดยดูความสัมพันธ์กับมิติด้านวันที่ในขณะที่ตารางที่สองมีการเจาะข้ามไปยังมิติด้านผลิตภัณฑ์โดยเปรียบเทียบยอดขายผลิตภัณฑ์ต่าง ๆ คือโซดา นม และน้ำผลไม้ กับมิติด้านวันที่และเน้นดูข้อมูลเฉพาะรัฐ CA เพียงอย่างเดียว

	DATE	1/1/2005	1/2/2005					
	Metrics	Sales in USD	Sales in USD	Sales in USD	Sales	s in SD		
TORE								
A A		40	50	90	18	80		
OR \		3,115	3,340	1,267	7,72	22		
_A		1,583	7,418	4,881	13,88	82		
Total		4,738	10,808	6,238	21,78	84		
g		CA → Pro		E 1/1/20	05 1/2	2/2005 1	1/3/2005	
5			DATI Metric	S Sale:		2/2005 1	1/3/2005 Sales in USD	Sales in
8	h	PRODU	DATI Metric	S Sale:	s in ISD	Sales in USD	Sales in USD	Sales in USD
8		PRODU Soda	DATI Metric	S Sale	s in ISD	Sales in USD	Sales in USD	Sales in USD
9	h	PRODU Soda Milk	DATI Metric	S Sale	s in ISD 10 20	Sales in USD 10 10	Sales in USD 20 30	Sales in USD 40 60
8	h	PRODU Soda	DATI Metric	S Sale	s in ISD	Sales in USD	Sales in USD	Sales in USD

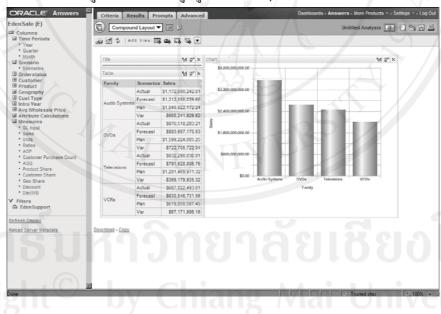
รูป 2.14 แสดงตัวอย่างการเจาะข้าม

5) การ โรลดาวน์ (Roll down) และการ โรลอัพ (Roll up) เป็นการสรุปข้อมูลของลำดับชั้น ที่สูงกว่าหรือลำดับชั้นที่ต่ำกว่าโดยทำการสรุป ณ ลำดับชั้นที่กำหนด รูปที่ 2.15 เป็นตัวอย่างของ การ โรลดาวน์มิติด้านผลิตภัณฑ์จากระดับที่สาม ไปยังระดับที่สองและ ไปยังระดับที่หนึ่ง ซึ่งลำดับชั้นของมิติด้านผลิตภัณฑ์ประกอบไปด้วยประเภทของกลุ่มผลิตภัณฑ์ ไปยังกลุ่มผลิตภัณฑ์ และ ไปยังผลิตภัณฑ์แต่ละตัว

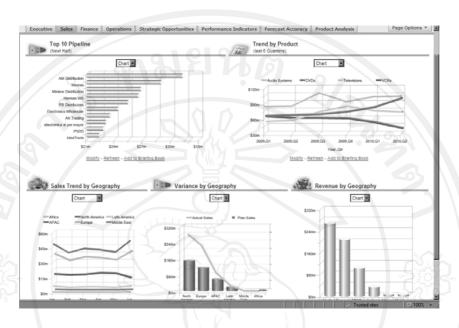


รูป 2.15 แสดงตัวอย่างของการโรลดาวน์และการโรลอัพ

2.6 รูปแบบของรายงานจากลูกบาศก์การวิเคราะห์ประมวลผลออนไลน์


Michael และคณะ (2553) กล่าวถึงรูปแบบของรายงานที่ใช้กับการวิเคราะห์ประมวลผล ออนไลน์ไว้หลายชนิด ยกตัวอย่างได้ดังนี้

2.6.1 รายงานพื้นฐาน (Basic Report) เป็นรายงานชนิดที่ง่ายที่สุด มีแหล่งข้อมูลเพียง แหล่งเคียว นำเสนอข้อมูลในรูปแบบกริดข้อมูล (Data Grid) ซึ่งประกอบไปด้วยแถวและคอลัมน์ รูป 2.16 แสดงตัวอย่างรายงานพื้นฐานสำหรับกลุ่มผลิตภัณฑ์ สถานการณ์เวลา และข้อมูลการขาย


รูป 2.16 แสดงตัวอย่างรายงานแบบพื้นฐาน

2.6.2 รายงานแบบผสม (Compound Report) มีการเพิ่มองค์ประกอบของการวิเคราะห์ แบบมองเห็นได้ที่กริดข้อมูลโดยเพิ่มแผนภูมิรูปแบบต่าง ๆ เพื่อแสดงผลการวิเคราะห์

รูป 2.17 แสดงรายงานแบบผสม

2.6.3 รายงานแบบแผงหน้าปัด (Dashboard Report) เป็นการรวบรวมรายงานต่าง ๆ ไว้ ด้วยกันโดยแสดงข้อมูลในระดับการสรุปผล ซึ่งมีวัตถุประสงค์เพื่อแสดงภาพที่สมบูรณ์ของกลุ่ม ตัวชี้วัดต่าง ๆ ในองค์กร รายงานแบบแผงหน้าปัดอาจประกอบไปด้วยรายงานพื้นฐานและรายงาน แบบผสมนำเสนอรวมกันในหน้าจอเดียว นอกจากนี้ยังสามารถเชื่อมโยงไปสู่รายละเอียดเพิ่มเติมได้ ด้วย

รูป 2.18 แสดงตัวอย่างรายงานแผงหน้าปัดซึ่งแสดงยอดขายในหลาย ๆ มุมมอง

2.7 งานวิจัยที่เกี่ยวข้อง

คเชนทร์ อึ่งสกุล (2552) ได้ค้นคว้าแบบอิสระเรื่อง "การพัฒนาระบบคลังข้อมูลด้านแรงงาน ของสำนักงานสถิติจังหวัดเชียงใหม่" โดยมีวัตถุประสงค์เพื่อศึกษาและจัดทำระบบคลังข้อมูลด้าน แรงงานของสำนักงานสถิติจังหวัดเชียงใหม่ ได้ผลว่าผู้บริหารและผู้ที่สนใจ สามารถเชื่อมต่อเข้าไป ยังคลังข้อมูล โดยใช้เครื่องคอมพิวเตอร์ของตนเองได้ ซึ่งการเชื่อมต่อสามารถทำได้ทันทีตามความ ต้องการ ประสิทธิภาพสูง ใช้งานได้ง่าย ข้อมูลถูกต้องตรงกันหมด คำถามเดียวกันได้รับคำตอบที่ เหมือนกันไม่ว่าผู้ถามจะเป็นใคร ถามเวลาไหน ข้อมูลในคลังข้อมูลสามารถนำมาวิเคราะห์โดยแบ่ง ข้อมูลหรือรวมข้อมูลตามความต้องการได้ รายงานมีความยืดหยุ่น และสามารถเปลี่ยนแปลงได้ตาม ความต้องการของผู้บริหาร โดยคุณภาพของข้อมูลในคลังข้อมูลช่วยเพิ่มประสิทธิภาพในการบริหาร จัดการงานด้านต่างๆ ภายในสำนักงานสถิติได้

สมนึก วิเศษธรรมรัตน์ (2547) ได้ค้นคว้าแบบอิสระเรื่อง "การวิเคราะห์ยอดขายตาม เป้าประสงค์ของบริษัท อาร์ตแอนค์เทคโนโลยี จำกัด โดยใช้การแก้ปัญหาธุรกิจอย่างชาญฉลาดของ ไมโครซอฟต์" โดยมีวัตถุประสงค์เพื่อจัดทำระบบวิเคราะห์ยอดขายให้สามารถสนับสนุนวิเคราะห์ ยอดขายอย่างมีประสิทธิภาพ ซึ่งผลการทดสอบระบบด้วยการใช้งานจริงพบว่า ผู้จัดการฝ่ายขายได้ ประโยชน์จากการเรียนรู้การใช้ระบบธุรกิจชาญฉลาดได้ในระยะเวลาอันสั้น สามารถเข้าถึงข้อมูล

ได้ตลอดเวลาตามต้องการ ทำการวิเคราะห์ข้อมูลเฉพาะคราวได้จากคุณสมบัติการเปลี่ยนมิติมุมมอง ข้อมูล การเจาะลึก และการแสดงรายละเอียดข้อมูลด้านสินค้า ด้านช่องทางการจัดจำหน่าย ด้าน ลูกค้า และด้านเวลาได้อย่างง่ายดาย ส่งผลให้ผู้บริหารได้รับสารสนเทศด้านยอดขายไปสนับสนุน การตัดสินใจจนเกิดความรอบรู้ด้านยอดขาย ทำให้การบริหารสินค้า และช่องทางการจัดจำหน่ายมี ประสิทธิภาพมากขึ้น

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved